Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-13T08:13:45.189Z Has data issue: false hasContentIssue false

Binary Stars and Globular Cluster Dynamics

Published online by Cambridge University Press:  01 September 2007

John M. Fregeau*
Affiliation:
Northwestern University, Department of Physics and Astronomy, Evanston, IL 60208, USA. email: fregeau@northwestern.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this brief proceedings article I summarize the review talk I gave at the IAU 246 meeting in Capri, Italy, glossing over the well-known results from the literature, but paying particular attention to new, previously unpublished material. This new material includes a careful comparison of the apparently contradictory results of two independent methods used to simulate the evolution of binary populations in dense stellar systems (the direct N-body method of Hurley, Aarseth, & Shara (2007) and the approximate Monte Carlo method of Ivanova et al. (2005)), that shows that the two methods may not actually yield contradictory results, and suggests future work to more directly compare the two methods.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Clark, G. W. 1975, ApJL, 199, L143CrossRefGoogle Scholar
Fregeau, J. M. & Rasio, F. A. 2007, ApJ, 658, 1047CrossRefGoogle Scholar
Goodman, J. & Hut, P. 1989, Nature, 339, 40CrossRefGoogle Scholar
Heggie, D. C. 1975, MNRAS, 173, 729CrossRefGoogle Scholar
Heggie, D. & Hut, P. 2003, The Gravitational Million-Body Problem: A Multidisciplinary Approach to Star Cluster Dynamics, by Heggie, Douglas and Hut., PietCambridge University Press, 2003, 372 pp.CrossRefGoogle Scholar
Heggie, D. C., Trenti, M., & Hut, P. 2006, MNRAS, 368, 677CrossRefGoogle Scholar
Hurley, J. R. 2007, MNRAS, 379, 93CrossRefGoogle Scholar
Hurley, J. R., Aarseth, S. J., & Shara, M. M. 2007, ApJ, 665, 707CrossRefGoogle Scholar
Hut, P., et al. 1992, PASP, 104, 981CrossRefGoogle Scholar
Ivanova, N., Belczynski, K., Fregeau, J. M., & Rasio, F. A. 2005, MNRAS, 358, 572CrossRefGoogle Scholar
Katz, J. I. 1975, Nature, 253, 698CrossRefGoogle Scholar
Mackey, A. D., Wilkinson, M. I., Davies, M. B., & Gilmore, G. F. 2007, MNRAS, 379, L40CrossRefGoogle Scholar
Merritt, D., Piatek, S., Portegies Zwart, S., & Hemsendorf, M. 2004, ApJL, 608, L25CrossRefGoogle Scholar
Miocchi, P. 2007, MNRAS, 783Google Scholar
Pooley, D., et al. 2003, ApJL, 591, L131CrossRefGoogle Scholar
Pooley, D., & Hut, P. 2006, ApJL, 646, L143CrossRefGoogle Scholar
Trenti, M. 2006, ArXiv Astrophysics e-prints, arXiv:astro-ph/0612040Google Scholar
Trenti, M., Ardi, E., Mineshige, S., & Hut, P. 2007, MNRAS, 374, 857CrossRefGoogle Scholar
Verbunt, F. & Hut, P. 1987, The Origin and Evolution of Neutron Stars, 125, 187CrossRefGoogle Scholar