Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-13T00:47:01.719Z Has data issue: false hasContentIssue false

Binary systems: implications for outflows & periodicities relevant to masers

Published online by Cambridge University Press:  24 July 2012

Nishant K. Singh
Affiliation:
Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560080, India emails: nishant@rri.res.in, desh@rri.res.in Joint Astronomy Programme, Indian Institute of Science, Bangalore 560 012, India
Avinash A. Deshpande
Affiliation:
Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560080, India emails: nishant@rri.res.in, desh@rri.res.in
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Bipolar molecular outflows have been observed and studied extensively in the past, but some recent observations of periodic variations in maser intensity pose new challenges. Even quasi-periodic maser flares have been observed and reported in the literature. Motivated by these data, we have tried to study situations in binary systems with specific attention to the two observed features, i.e., the bipolar flows and the variabilities in the maser intensity. We have studied the evolution of spherically symmetric wind from one of the bodies in the binary system, in the plane of the binary. Our approach includes the analytical study of rotating flows with numerical computation of streamlines of fluid particles using PLUTO code. We present the results of our findings assuming simple configurations, and discuss the implications.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Araya, E. D., Hofner, P., Goss, W. M., Kurtz, S., Richards, A. M. S., Linz, H., Olmi, L., & Sewilo, M., 2010, ApJ, 717, L133CrossRefGoogle Scholar
Bachiller, R., 1996, ARA&A, 34, 115Google Scholar
Goedhart, S., Gaylard, M. J., & van der Walt, D. J., 2004, MNRAS, 355, 553CrossRefGoogle Scholar
Goedhart, S., Minier, V., Gaylard, M. J., & van der Walt, D. J., 2005, MNRAS, 356, 839CrossRefGoogle Scholar
Goedhart, S., Langa, M. C., Gaylard, M. J., & van der Walt, D. J., 2009, MNRAS, 398, 995CrossRefGoogle Scholar
Lada, C. J., 1985, ARA&A, 23, 267Google Scholar
Mignone, A., Bodo, G., Massaglia, S., Matsakos, T., Tesileanu, O., Zanni, C., & Ferrari, A., 2007, ApJS, 170, 228CrossRefGoogle Scholar
Poincaré, H., 1890, Acta Math., 13, 1270Google Scholar
Snell, R. L., Loren, R. B., & Plambeck, R. L., 1980, ApJ, 239, L17CrossRefGoogle Scholar
Snell, R. L., 1983, RMAA, 7, 79Google Scholar
Szymczak, M., Wolak, P., Bartkiewicz, A., & van Langevelde, H. J., 2011, A&A, 531, L3Google Scholar
van der Walt, D. J., Goedhart, S., & Gaylard, M. J., 2009, MNRAS, 398, 961CrossRefGoogle Scholar