Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T07:35:31.906Z Has data issue: false hasContentIssue false

Black Holes and Core Expansion in Massive Star Clusters

Published online by Cambridge University Press:  01 September 2007

A. D. Mackey
Affiliation:
Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, UK; email: dmy@roe.ac.uk
M. I. Wilkinson
Affiliation:
Department of Physics & Astronomy, University of Leicester, University Road, Leicester, LE1 7RH, UK
M. B. Davies
Affiliation:
Lund Observatory, Box 43, SE-221 00 Lund, Sweden
G. F. Gilmore
Affiliation:
Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Massive star clusters in the Magellanic Clouds are observed to follow a striking trend in size with age – older clusters exhibit a much greater spread in core radius than do younger clusters, which are generally compact. We present results from realistic N-body modelling of massive star clusters, aimed at investigating a dynamical origin for the radius-age trend. We find that stellar-mass black holes, formed as remnants of the most massive stars in a cluster, can constitute a dynamically important population. If retained, these objects rapidly form a dense core where interactions are common, resulting in the scattering of black holes into the cluster halo, and the ejection of black holes from the cluster. These processes heat the stellar component, resulting in prolonged core expansion of a magnitude matching the observations. Core expansion at early times does not result from the action of black holes, but can be reproduced by the effects of rapid mass-loss due to stellar evolution in a primordially mass segregated cluster.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Aarseth, S. J. 2003, Gravitational N-body Simulations. Cambridge University Press, CambridgeCrossRefGoogle Scholar
Elson, R., Fall, S. M., & Freeman, K. C. 1987, ApJ 323, 54CrossRefGoogle Scholar
Elson, R., Freeman, K. C., & Lauer, T. R. 1989, ApJ 347, L69CrossRefGoogle Scholar
Kroupa, P. 2001, MNRAS 322, 231CrossRefGoogle Scholar
Kulkarni, S. R., Hut, P., & McMillan, S. 1993, Nature 364, 421Google Scholar
Mackey, A. D. & Gilmore, G. F. 2003a, MNRAS 338, 85Google Scholar
Mackey, A. D. & Gilmore, G. F. 2003b, MNRAS 338, 120CrossRefGoogle Scholar
Mackey, A. D., et al. 2006, ApJ 653, L105Google Scholar
Mackey, A. D., Wilkinson, M. I., Davies, M. B., & Gilmore, G. F. 2007a, MNRAS 379, L40Google Scholar
Makino, J., Fukushige, T., Koga, M., & Namura, K. 2003, PASJ 55, 1163Google Scholar
Merritt, D., Piatek, S., Portegies Zwart, S., & Hemsendorf, M. 2004, ApJ 608, L25CrossRefGoogle Scholar
Sigurdsson, S. & Hernquist, L. 1993, Nature 364, 423Google Scholar
Wilkinson, M. I., Hurley, J. R., Mackey, A. D., Gilmore, G. F., & Tout, C. A. 2003, MNRAS 343, 1025CrossRefGoogle Scholar