Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T21:34:18.796Z Has data issue: false hasContentIssue false

BOSS-3D: A Binary Object Spectral Synthesis Code in 3D

Published online by Cambridge University Press:  30 November 2022

L. Hennicker
Affiliation:
Institute of Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium email: levin.hennicker@kuleuven.be
N. D. Kee
Affiliation:
National Solar Observatory, 22 Ohi’a Ku Street, Makawao, HI 96768, USA
T. Shenar
Affiliation:
Institute of Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium email: levin.hennicker@kuleuven.be Anton Pannekoek Institute for Astronomy, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam, The Netherlands
J. Bodensteiner
Affiliation:
Institute of Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium email: levin.hennicker@kuleuven.be European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München, Germany
M. Abdul-Masih
Affiliation:
European Southern Observatory, Alonso de Cordova 3107, Vitacura, Casilla 19001, Santiago de Chile, Chile
I. El Mellah
Affiliation:
Institut de Planétologie et d’Astrophysique de Grenoble, 414 Rue de la Piscine, 38400 Saint-Martin-d’Hères, France
H. Sana
Affiliation:
Institute of Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium email: levin.hennicker@kuleuven.be
J. O. Sundqvist
Affiliation:
Institute of Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium email: levin.hennicker@kuleuven.be
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

To decode the information stored within a spectrum, detailed modelling of the physical state is required together with accurate radiative transfer solution schemes. In the analysis of stellar spectra, the numerical model often needs to account for high velocity outflows, multi-dimensional structures, and the effects of binary companions. Focusing now on binary systems, we present the BOSS-3D spectral synthesis code, which is capable of calculating synthetic line profiles for a variety of binary systems. Assuming the state of the circumstellar material to be known, the standard pz-geometry is extended by defining individual coordinate systems for each object. By embedding these coordinate systems within the observer’s frame, BOSS-3D automatically accounts for outflows or discs within both involved systems, and includes all Doppler shifts. Moreover, the code accounts for different length-scales, and thus could also be used to analyse transit-spectra of planetary atmospheres. As a first application of BOSS-3D, we model the phase-dependent line profiles for the enigmatic binary (or multiple) system LB-1.

Type
Contributed Paper
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of International Astronomical Union

References

Busche, J. R. & Hillier, D. J. 2005, AJ, 129, 454 CrossRefGoogle Scholar
Carciofi, A. C. & Bjorkman, J. E. 2006, ApJ, 639, 1081 CrossRefGoogle Scholar
De Ceuster, F., Homan, W., Yates, J., et al. 2020, MNRAS, 492, 1812 CrossRefGoogle Scholar
De Ceuster, F., Bolte, J., Homan, W., et al. 2020, MNRAS, 499, 5194 CrossRefGoogle Scholar
Hamann, W. R. & Gräfener, G. 2003, A&A, 410, 993 Google Scholar
Hauschildt, P. H. 1992, J. Quant. Spec. Radiat. Transf., 47, 433 CrossRefGoogle Scholar
Hauschildt, P. H. & Baron, E. 2006, A&A, 451, 273 Google Scholar
Hennicker, L., Puls, J., Kee, N. D., & Sundqvist, J. O. 2018, A&A, 616, A140 Google Scholar
Hennicker, L., Puls, J., Kee, N. D., & Sundqvist, J. O. 2020, A&A, 633, A16 Google Scholar
Hennicker, L., Kee, N. D., Shenar, T., et al. 2021, A&A, accepted, arXiv:2111.15345 Google Scholar
Hillier, D. J. & Miller, D. L. 1998, ApJ, 496, 407 CrossRefGoogle Scholar
Hillier, D. J. 2012, in From Interacting Binaries to Exoplanets: Essential Modeling Tools, ed. M. T. Richards & I. Hubeny, 282, 229234 Google Scholar
Lamers, H. J. G. L. M., Cerruti-Sola, M., & Perinotto, M. 1987, ApJ, 314, 726 CrossRefGoogle Scholar
Liu, J., Zhang, H., Howard, A. W., et al. 2019, Nature, 575, 618 CrossRefGoogle Scholar
Lobel, A. & Blomme, R. 2008, ApJ 678, 408 CrossRefGoogle Scholar
Pauldrach, A. W. A., Hoffmann, T. L., & Lennon, M. 2001, A&A, 375, 161 Google Scholar
Puls, J., Najarro, F., Sundqvist, J. O., & Sen, K. 2020, A&A, 642, A172 Google Scholar
Sander, A. A. C., Hamann, W. R., Todt, H., Hainich, R., & Shenar, T. 2017, A&A, 603, A86 Google Scholar
Shakura, N. I. & Sunyaev, R. A. 1973, A&A, 500, 33 Google Scholar
Shenar, T., Bodensteiner, J., Abdul-Masih, M., et al. 2020, A&A, 639, L6 Google Scholar
Sundqvist, J. O., ud-Doula, A., Owocki, S. P., et al. 2012, MNRAS, 423, L21 CrossRefGoogle Scholar
Sundqvist, J. O. & Puls, J. 2018, A&A, 619, A59 Google Scholar