Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-16T19:54:18.110Z Has data issue: false hasContentIssue false

Breaking the disc-halo degeneracy in NGC 1291 using hydrodynamic simulations

Published online by Cambridge University Press:  21 March 2017

Francesca Fragkoudi
Affiliation:
Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, 13388, Marseille, France GEPI, Observatoire de Paris, CNRS, Univ Paris Diderot, Sorbonne Paris Cite, Place Jules Janssen, 92195 Meudon, France email: francesca.fragkoudi@obspm.fr
E. Athanassoula
Affiliation:
Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, 13388, Marseille, France
A. Bosma
Affiliation:
Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, 13388, Marseille, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a pilot study on the nearby massive galaxy NGC 1291, in which we aim to constrain the dark matter in the inner regions, by obtaining a dynamical determination of the disc mass-to-light ratio (M/L). To this aim, we model the bar-induced dust lanes in the galaxy, using hydrodynamic gas response simulations. The models have three free parameters, the M/L of the disc, the bar pattern speed and the disc height function. We explore the parameter space to find the best fit models, i.e. those in which the morphology of the shocks in the gas simulations matches the observed dust lanes. The best-fit models suggest that the M/L of NGC 1291 agrees with that predicted by stellar population synthesis models in the near-infrared (≈ 0.6 M/L), which leads to a borderline maximum disc for this galaxy. The bar rotates fast, with corotation radius ⩽ 1.4 times the bar length. Additionally, we find that the height function has a significant effect on the results, and can bias them towards lower or higher M/L.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Athanassoula, E. 1992, MNRAS, 259, 345 Google Scholar
Bottema, R. 1993, A&A, 275, 16 Google Scholar
Corsini, E. M. 2011, MemSAIt, 18, 23 Google Scholar
Eskew, M., Zaritsky, D., & Meidt, S. 2012, AJ, 143, 139 CrossRefGoogle Scholar
Elmegreen, B. 1996, in Buta, R., Crocker, D. A. and Elmegreen, B. G. (eds) Barred Galaxies, Proc. IAU Colloquim No. 157Google Scholar
Fragkoudi, F., Athanassoula, E., Bosma, A., & Iannuzzi, F. 2015, MNRAS, 450, 229 Google Scholar
Kranz, T., Slyz, A., & Rix, H. W. 2001, ApJ, 562, 164 Google Scholar
McGaugh, S. S., Schombert, J. M., Bothun, G. D., & de Blok, W. J. G. 2000, ApJL, 533, L99 CrossRefGoogle Scholar
Meidt, S. E. et al. 2014, ApJ, 788, 144 Google Scholar
Prendergast, K. H. 1983, in Athanassoula, E. (eds) Internal Kinematics and Dynamics of Galaxies, Proc. IAU Symposium No. 100, (Dordrecht: D. Reidel Publishing Co) p. 1 Google Scholar
Querejeta, M., et al. 2015, ApJS, 219, 5 Google Scholar
Roeck, B., Vazdekis, A., Peletier, R., Knapen, J. H., & Falcón-Barroso, J. 2015, MNRAS, 449, 2853 Google Scholar
Sackett, P. D. 1997, ApJ, 483, 103 Google Scholar
Sheth, K. et al. 2010, PASP, 122, 1397 Google Scholar
van Albada, T. S., Bahcall, J. N., Begeman, K., & Sancisi, R. 1985, ApJ, 295, 305 Google Scholar
Weiner, B. J., Sellwood, J. A., & Williams, T. B. 2001, ApJ, 546, 931 Google Scholar