No CrossRef data available.
Published online by Cambridge University Press: 16 October 2024
Evolution models of planetary systems find that resonant chains of planets often arise from the formation within protoplanetary disks. However, the occurrence of observed resonant chains, such as the notable TRAPPIST-1 system, is relatively low. This suggests that the majority of these chains become destabilized after the dissipation of the protoplanetary disk. Stellar tides, especially the wavelike dynamical tide, could be proposed as potential contributors to the destabilization of resonant chains. The dissipation of the dynamical tide, because of the frequency-dependant tidal excitation of stellar oscillation eigenmodes, potentially leads to a boost in migration for the close-in planets and disrupts the fragile stability of resonant chains. Thus, we investigate the influence of the stellar dynamical tide on multi-planet systems with taking their dissipation into account in the N-body code Posidonius. Notably, this research represents the first exploration of the impact of frequency-dependent dynamical tides on multi-planet systems.