Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T13:06:40.459Z Has data issue: false hasContentIssue false

Characterizing the youngest protostellar disks with the IRAM-PdBI and ALMA interferometers

Published online by Cambridge University Press:  13 January 2020

Anaëlle Maury*
Affiliation:
AIM, CEA, CNRS, Université Paris-Saclay, Université Paris Diderot, Sorbonne Paris Cité, F-91191 Gif-sur-Yvette, France email: anaelle.maury@cea.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I present our observations and modeling of the 1.3 mm and 3.18 mm dust continuum emission in Class 0 protostars, from the IRAM-PdBI CALYPSO survey. We show that most protostars are better reproduced by models including a disk-like dust continuum component contributing to the flux at small scales, but less than 25% of these candidate protostellar disks are resolved at radii >60 au, which favors magnetized models of rotating protostellar collapse for disk formation (Maury et al. 2019). I also present new ALMA observations of the molecular line emission in the IRAM04191 protostar, suggesting a small counter-rotating disk is detected in this young low-luminosity solar-type protostar. Finally, I show our ALMA observations of the magnetic field topology in the B335 protostar, which when compared to the typical output from protostellar collapse models, suggest the magnetic field might be responsible for constraining the disk size to remain very small in this protostar (Maury et al. 2018).

Type
Contributed Papers
Copyright
© International Astronomical Union 2020 

References

André, P., Motte, F., & Bacmann, A., ApJL, 513, L57 (1999)CrossRefGoogle Scholar
André, P., Ward-Thompson, D., & Barsony, M., Protostars and Planets IV, 59 (2000)Google Scholar
Belloche, A., André, P., Despois, D. & Blinder, S., A&A, 393, 927 (2002)Google Scholar
Cassen, P. & Moosman, A., Icarus, 48, 353 (1981)CrossRefGoogle Scholar
Evans, N., Dunham, M., Jørgensen, J. et al., ApJ, 181, 321 (2009)CrossRefGoogle Scholar
Hennebelle, P., Commerçon, B., Chabrier, G., & Marchand, P., ApJL, 830, L8 (2016)CrossRefGoogle Scholar
Lee, C.-F., Ho, P. T. P., & White, S. M., ApJ, 619, 948 (2005)CrossRefGoogle Scholar
Li, Z.Y., Banerjee, R., Pudritz, R., Jørgensen, J., Shang, S., Krasnopolsky, R., & Maury, A.J., Protostars and Planets VI, 173 (2014)Google Scholar
Maury, A.J., André, Ph ., Hennebelle, P., Motte, F., Stamatellos, D., Bate, M., Belloche, A., Duchêne, G. & Whitworth, A., A&A, 512, A40+ (2010)Google Scholar
Maury, A.J., André, Ph ., Men’shchikov, A., Könyves, V., & Bontemps, S., A&A, 535, A77 (2011)Google Scholar
Maury, A.J., Girart, J.M., Zhang, Q., Hennebelle, P., Keto, E., Rao, R., Lai, S.P., Ohashi, N., & Galametz, M., MNRAS, 477, 2, 2760 (2018)CrossRefGoogle Scholar
Maury, A.J., André, Ph., Testi, L. et al., A&A, 621, A76 (2019)Google Scholar
Takakuwa, S., Ohashi, N., & Hirano, N., ApJ, 590, 932 (2003)CrossRefGoogle Scholar
Terebey, S., Shu, F., & Cassen, P., ApJ, 286, 529 (1984)CrossRefGoogle Scholar
Yorke, H. W. & Bodenheimer, P., ApJ, 525, 330 (1999)CrossRefGoogle Scholar