Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T02:04:15.733Z Has data issue: false hasContentIssue false

Chemical abundances in tidally disrupted globular clusters

Published online by Cambridge University Press:  18 January 2010

D. Yong
Affiliation:
Australian National University, Mount Stromlo Observatory, Australia
J. Meléndez
Affiliation:
Centro de Astrofísica da Universidade do Porto, Portugal
K. Cunha
Affiliation:
National Optical Astronomy Observatories, USA
A. I. Karakas
Affiliation:
Australian National University, Mount Stromlo Observatory, Australia
J. E. Norris
Affiliation:
Australian National University, Mount Stromlo Observatory, Australia
V. V. Smith
Affiliation:
National Optical Astronomy Observatories, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present abundance measurements in the tidally disrupted globular cluster NGC 6712. In this cluster, there are large star-to-star variations of the light elements C, N, O, F and Na. While such abundance variations are seen in every well-studied globular cluster, they are not found in field stars and indicate that clusters like NGC 6712 cannot provide many field stars and/or field stars do not form in environments with chemical-enrichment histories like those of NGC 6712. Preliminary analysis of NGC 5466, another tidally disrupted cluster, suggests little (if any) abundance variation for O and Na and the abundance ratios [X/Fe] are comparable to field stars at the same metallicity. Therefore, globular clusters like NGC 5466 may have been Galactic building blocks.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Belokurov, V., Evans, N. W., Irwin, M. J., Hewett, P. C., & Wilkinson, M. I. 2006, ApJ (Letters), 637, L29CrossRefGoogle Scholar
Carretta, E. 2006, AJ, 131, 1766CrossRefGoogle Scholar
Cunha, K. & Smith, V. V. 2005, ApJ, 626, 425CrossRefGoogle Scholar
Cunha, K., Smith, V. V., & Gibson, B. K. 2008, ApJ (Letters), 679, L17CrossRefGoogle Scholar
Cunha, K., Smith, V. V., Lambert, D. L., & Hinkle, K. H. 2003, AJ, 126, 1305CrossRefGoogle Scholar
de Marchi, G., Leibundgut, B., Paresce, F., & Pulone, L. 1999, A&A (Letters), 343, L9Google Scholar
Dinescu, D. I., Girard, T. M., & van Altena, W. F. 1999, AJ, 117, 1792CrossRefGoogle Scholar
Gratton, R. G., Bragaglia, A., Carretta, E., Clementini, G., Desidera, S., Grundahl, F., & Lucatello, S. 2003, A&A, 408, 529Google Scholar
Gratton, R., Sneden, C., & Carretta, E. 2004, ARA&A, 42, 385Google Scholar
Karakas, A. I., Lee, H. Y., Lugaro, M., Görres, J., & Wiescher, M. 2008, ApJ, 676, 1254CrossRefGoogle Scholar
Lada, C. J. & Lada, E. A. 2003, ARA&A, 41, 57Google Scholar
Meléndez, J. & Cohen, J. G. 2009, ApJ, 699, 2017CrossRefGoogle Scholar
Odenkirchen, M., et al. , 2001, ApJ (Letters), 548, L165CrossRefGoogle Scholar
Peebles, P. J. E. & Dicke, R. H. 1968, ApJ, 154, 891CrossRefGoogle Scholar
Smith, G. H., Sneden, C., & Kraft, R. P. 2002, AJ, 123, 1502CrossRefGoogle Scholar
Smith, V. V., Cunha, K., Ivans, I. I., Lattanzio, J. C., Campbell, S., & Hinkle, K. H. 2005, ApJ, 633, 392CrossRefGoogle Scholar
Takahashi, K. & Portegies Zwart, S. F. 2000, ApJ, 535, 759CrossRefGoogle Scholar
Yong, D., Grundahl, F., Johnson, J. A., & Asplund, M. 2008, ApJ, 684, 1159CrossRefGoogle Scholar
Yong, D., Meléndez, J., Cunha, K., Karakas, A. I., Norris, J. E., & Smith, V. V. 2008, ApJ, 689, 1020CrossRefGoogle Scholar