Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T17:09:50.785Z Has data issue: false hasContentIssue false

Chemical evolution of planetary materials in a dynamic solar nebula

Published online by Cambridge University Press:  12 October 2020

Fred J. Ciesla*
Affiliation:
Department of the Geophysical Sciences, The University of Chicago, Chicago, IL60615, USA email: fciesla@uchicago.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

As observational facilities improve, providing new insights into the chemistry occurring in protoplanetary disks, it is important to develop more complete pictures of the processes that shapes the chemical evolution of materials during this stage of planet formation. Here we describe how primitive meteorites in our own Solar System can provide insights into the processes that shaped planetary materials early in their evolution around the Sun. In particular, we show how this leads us to expect protoplanetary disks to be very dynamic objects and what modeling and laboratory studies are needed to provide a more complete picture for the early chemical evolution that occurs for planetary systems.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Andrews, S. M., Huang, J., Pérez, L. M., et al. 2018, ApJL, 869, L41 CrossRefGoogle Scholar
Bockelée-Morvan, D., Gautier, D., Hersant, F., et al. 2002, A&A, 384, 1107 Google Scholar
Boss, A. P. 2008, Earth and Planetary Science Letters, 268, 102 CrossRefGoogle Scholar
Brownlee, D., Tsou, P., Aléon, J., et al. 2006, Science, 314, 1711 CrossRefGoogle Scholar
Ciesla, F. J. 2007, Science, 318, 613 CrossRefGoogle Scholar
Ciesla, F. J. 2010, Icarus, 208, 455 CrossRefGoogle Scholar
Ciesla, F. J. 2010, ApJ, 723, 514 CrossRefGoogle Scholar
Ciesla, F. J. 2011, ApJ, 740, 9 CrossRefGoogle Scholar
Ciesla, F. J. & Sandford, S. A. 2012, Science, 336, 452 CrossRefGoogle Scholar
Clayton, R. N. 1993, Annual Review of Earth and Planetary Sciences, 21, 115 CrossRefGoogle Scholar
Clayton, R. N., Grossman, L., & Mayeda, T. K. 1973, Science, 182, 485 CrossRefGoogle Scholar
Connolly, H. C. & Jones, R. H. 2016, J. Geophys. Res. (Planets), 121, 1885 CrossRefGoogle Scholar
Connelly, J. N., Bizzarro, M., Krot, A. N., et al. 2012, Science, 338, 651 CrossRefGoogle Scholar
Cuzzi, J. N., Davis, S. S., & Dobrovolskis, A. R. 2003, Icarus, 166, 385 CrossRefGoogle Scholar
Dullemond, C. P., Birnstiel, T., Huang, J., et al. 2018, ApJL, 869, L46 CrossRefGoogle Scholar
Ebel, D. S. 2006, Meteorites and the Early Solar System II, 253Google Scholar
Flaherty, K. M., Hughes, A. M., Teague, R., et al. 2018, ApJ, 856, 117 CrossRefGoogle Scholar
Grossman, L. 1972, Geochim. Cosmochim. Acta, 36, 597 CrossRefGoogle Scholar
Hartmann, L. & Bae, J. 2018, MNRAS, 474, 88 CrossRefGoogle Scholar
Hartmann, L., Herczeg, G., & Calvet, N. 2016, Annu. Rev. Astron. Astrophys., 54, 135 CrossRefGoogle Scholar
Henning, T. & Semenov, D. 2013, Chem. Rev., 113, 9016 CrossRefGoogle Scholar
Jacquet, E., Gounelle, M., & Fromang, S. 2011, Lunar and Planetary Science Conference, 1091Google Scholar
Krot, A. N., Amelin, Y., Cassen, P., et al. 2005, Nature, 436, 989 CrossRefGoogle Scholar
Lada, C. J. & Lada, E. A. 2003, Annu. Rev. Astron. Astrophys., 41, 57 CrossRefGoogle Scholar
McKeegan, K. D., Kallio, A. P. A., Heber, V. S., et al. 2011, Science, 332, 1528 CrossRefGoogle Scholar
McKeegan, K. D., Aléon, J., Bradley, J., et al. 2006, Science, 314, 1724 CrossRefGoogle Scholar
Scott, E. R. D. 2007, Annual Review of Earth and Planetary Sciences, 35, 577 CrossRefGoogle Scholar