Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-14T06:32:42.041Z Has data issue: false hasContentIssue false

The Chemistry of the Early Universe

Published online by Cambridge University Press:  21 December 2011

S. C. O. Glover*
Affiliation:
Institut für Theoretische Astrophysik, Zentrum für Astronomie der Universität Heidelberg, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The chemistry of the early Universe is a fascinating field of study. Even in the absence of any elements heavier than lithium, a surprising degree of chemical complexity proves to be possible, giving the topic considerable interest in its own right. In addition, the fact that molecular hydrogen plays a key role in the formation of the first stars and galaxies means that if we want to understand the formation of these objects, we must first develop a good understanding of the chemical evolution of the gas. In this review, I first give a brief introduction to the chemistry occurring in the gas prior to the formation of the first stars and galaxies, and then go on to discuss in more detail the main chemical processes occurring during the gravitational collapse of gas from intergalactic to protostellar densities, and how these processes influence the final outcome of the collapse.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Abel, T., Bryan, G. L., & Norman, M. L. 2002, Science, 295, 93CrossRefGoogle Scholar
Alizadeh, E. & Hirata, C. M. 2010, Phys. Rev. D., submitted; arXiv:1012.2378Google Scholar
Barkana, R. & Loeb, A., 2001, Phys. Rep., 349, 125CrossRefGoogle Scholar
Bate, M. R., Bonnell, I. A., & Price, N. M., 1995, MNRAS, 277, 362CrossRefGoogle Scholar
Bonnor, W. B., 1956, MNRAS, 116, 351Google Scholar
Bromm, V., Coppi, P. S., & Larson, R. B., 2002, ApJ, 564, 23Google Scholar
Bromm, V. & Yoshida, N., 2011, ARA&A, in press; arXiv:1102.4638Google Scholar
Clark, P. C., Glover, S. C. O., & Klessen, R. S., 2008, ApJ, 672, 757CrossRefGoogle Scholar
Clark, P. C., Glover, S. C. O., Klessen, R. S., & Bromm, V. 2011a, ApJ, 727, 110CrossRefGoogle Scholar
Clark, P. C., Glover, S. C. O., Smith, R. J., Greif, T. H., Klessen, R. S., & Bromm, V. 2011b, Science, 331, 1040CrossRefGoogle Scholar
Cyburt, R. H., Fields, B. D., & Olive, K. A., 2008, JCAP, 11, 012CrossRefGoogle Scholar
Dubrovich, V., Bajkova, A., & Khaikin, V. B., 2008, New Astron., 13, 28Google Scholar
Ebert, R., 1955, Z. Astrophys., 37, 217Google Scholar
Federrath, C., Banerjee, R., Clark, P. C., & Klessen, R. S., 2010, ApJ, 713, 269CrossRefGoogle Scholar
Fendt, W. A., Chluba, J., Rubiño-Martín, J. A., & Wandelt, B. D., 2009, ApJS, 181, 627Google Scholar
Flower, D. R., Le Bourlot, J., Pineau des Forêts, G., & Roueff, E., 2000, MNRAS, 314, 753Google Scholar
Frommhold, L., 1993, Collision-Induced Absorption in Gases. (Cambridge Univ. Press: Cambridge)Google Scholar
Galli, D. & Palla, F. 1998, A&A, 335, 403Google Scholar
Gammie, C. F., 2011, ApJ, 553, 174CrossRefGoogle Scholar
Glover, S. C. O., 2008, in First Stars III, eds. O'Shea, B. W., Heger, A., Abel, T., AIP Press, pp. 2529Google Scholar
Glover, S. C. O. & Brand, P. W. J. L., 2003, MNRAS, 340, 210Google Scholar
Gould, R. J. & Salpeter, E. E. 1963, ApJ, 138, 393Google Scholar
Greif, T. H., Glover, S. C. O., Bromm, V., & Klessen, R. S., 2010, ApJ, 716, 510Google Scholar
Greif, T., Springel, V., White, S., Glover, S., Clark, P., Smith, R., Klessen, R., & Bromm, V., 2011, ApJ, in press; arXiv:1101.5491Google Scholar
Haiman, Z., Abel, T., & Madau, P., 2001, ApJ, 551, 599Google Scholar
Hirata, C. M. & Padmanabhan, N. 2006, MNRAS, 372, 1175CrossRefGoogle Scholar
Jasche, J., Ciardi, B., & Ensslin, T. A., 2007, MNRAS, 380, 417CrossRefGoogle Scholar
Johnson, J. L. & Bromm, V., 2006, MNRAS, 366, 247Google Scholar
Johnson, J. L., Greif, T. H., & Bromm, V., 2008, MNRAS, 388, 26Google Scholar
Kreckel, H., Bruhns, H., Čížek, M., Glover, S. C. O., Miller, K. A., Urbain, X., & Savin, D. W., 2010, Science, 329, 69CrossRefGoogle Scholar
Lepp, S. H., Stancil, P. C., & Dalgarno, A. 2002, J. Phys. B, 35, 57CrossRefGoogle Scholar
Maoli, R., Melchiorri, F., & Tosti, D., 1994, ApJ, 425, 372Google Scholar
Mayer, M. & Duschl, W. J., 2005, MNRAS, 356, 1CrossRefGoogle Scholar
McGreer, I. D. & Bryan, G. L., 2008, ApJ, 685, 8CrossRefGoogle Scholar
Morales, M. F. & Wyithe, J. S. B. 2010, ARA&A, 48, 127Google Scholar
Nagakura, T. & Omukai, K., 2005, MNRAS, 364, 1378CrossRefGoogle Scholar
Nakamura, F. & Umemura, M., 2002, ApJ, 569, 549Google Scholar
Naoz, S. & Barkana, R. 2007, MNRAS, 377, 667CrossRefGoogle Scholar
Oh, S. P. & Haiman, Z., 2003, MNRAS, 346, 456Google Scholar
Omukai, K. & Nishi, R., 1998, ApJ, 508, 141Google Scholar
Omukai, K., Nishi, R., Uehara, H., & Susa, H., 1998, Prog. Theor. Phys., 99, 747CrossRefGoogle Scholar
Palla, F., Salpeter, E. E., & Stahler, S. W., 1983, ApJ, 271, 632CrossRefGoogle Scholar
Puy, D. & Signore, M., 2002, New Astron. Reviews, 46, 709CrossRefGoogle Scholar
Ripamonti, E., Haardt, F., Ferrara, A., & Colpi, M., 2002, MNRAS, 334, 401CrossRefGoogle Scholar
Ripamonti, E. & Abel, T., 2004, MNRAS, 348, 1019Google Scholar
Schleicher, D. R. G., Galli, D., Palla, F., Camenzind, M., Klessen, R. S., Bartelmann, M., & Glover, S. C. O. 2008, A&A, 490, 521Google Scholar
Smith, R. J., Glover, S. C. O., Clark, P. C., Greif, T., & Klessen, R. S., 2011, MNRAS, 414, 3633CrossRefGoogle Scholar
Stacy, A. & Bromm, V., 2007, MNRAS, 382, 229Google Scholar
Stacy, A., Greif, T. H., & Bromm, V., 2010, MNRAS, 403, 45CrossRefGoogle Scholar
Stancil, P. C., Lepp, S., & Dalgarno, A. 1996, ApJ, 458, 401Google Scholar
Stancil, P. C., Lepp, S., & Dalgarno, A. 1998, ApJ, 509, 1Google Scholar
Switzer, E. R. & Hirata, C. M. 2005, Phys. Rev. D, 72, 083002Google Scholar
Tan, J. C. & Blackman, E. G., 2004, ApJ, 603, 401Google Scholar
Tan, J. C. & McKee, C. F., 2004, ApJ, 603, 383Google Scholar
Tegmark, M., Silk, J., Rees, M. J., Blanchard, A., Abel, T., & Palla, F., 1997, ApJ, 474, 1Google Scholar
Tseliakhovich, D., Barkana, R., & Hirata, C. 2010, arXiv:1012.2574Google Scholar
Tseliakhovich, D. & Hirata, C. 2010, Phys. Rev. D, 82, 083520CrossRefGoogle Scholar
Turk, M. J., Abel, T., & O'Shea, B. 2009, Science, 325, 601CrossRefGoogle Scholar
Turk, M. J., Clark, P. C., Glover, S. C. O., Greif, T. H., Abel, T., Klessen, R. S., & Bromm, V., 2011, ApJ, 726, 55Google Scholar
Wolcott-Green, J. & Haiman, Z., 2011, MNRAS, 412, 2603Google Scholar
Wong, W. Y., Moss, A., & Scott, D. 2008, MNRAS, 386, 1023CrossRefGoogle Scholar
Yoshida, N., Abel, T., Hernquist, L., & Sugiyama, N. 2003, ApJ, 592, 645CrossRefGoogle Scholar
Yoshida, N., Omukai, K., Hernquist, L., & Abel, T., 2006, ApJ, 652, 6Google Scholar
Yoshida, N., Omukai, K., & Hernquist, L., 2007, ApJ, 667, L117CrossRefGoogle Scholar
Yoshida, N., Oh, S. P., Kitayama, T., & Hernquist, L., 2007, ApJ, 663, 687Google Scholar
Yoshida, N., Omukai, K., & Hernquist, L., 2008, Science, 321, 669CrossRefGoogle Scholar