Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T19:20:18.630Z Has data issue: false hasContentIssue false

The chemodynamical evolution of the Milky Way disc – A new modeling approach

Published online by Cambridge University Press:  06 January 2014

Ivan Minchev
Affiliation:
Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482, Potsdam, Germany email: iminchev1@gmail.com
Cristina Chiappini
Affiliation:
Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482, Potsdam, Germany email: iminchev1@gmail.com
Marie Martig
Affiliation:
Centre for Astrophysics & Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Despite the recent advancements in the field of galaxy formation and evolution, fully self-consistent simulations are still unable to make the detailed predictions necessary for the planned and ongoing large spectroscopic and photometric surveys of the Milky Way disc. These difficulties arise from the very uncertain nature of sub-grid physical energy feedback within models, affecting both star formation rates and chemical enrichment. To avoid these problems, we have introduced a new approach which consists of fusing disc chemical evolution models with compatible numerical simulations. We demonstrate the power of this method by showing that a range of observational results can be explained by our new model. We show that due to radial migration from mergers at high redshift and the central bar at later times, a sizable fraction of old metal-poor, high-[α/Fe] stars can reach the solar vicinity. This naturally accounts for a number of recent observations related to both the thin and thick discs, despite the fact that we use thin-disc chemistry only. Within the framework of our model, the MW thick disc has emerged naturally from (i) stars born with high velocity dispersions at high redshift, (ii) stars migrating from the inner disc very early on due to strong merger activity, and (iii) further radial migration driven by the bar and spirals at later times. A significant fraction of old stars with thick-disc characteristics could have been born near the solar radius.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Abadi, M. G., Navarro, J. F., Steinmetz, M., & Eke, V. R. 2003, ApJ, 597, 21Google Scholar
Adibekyan, V. Z., Sousa, S. G., Santos, N. C., et al. 2012, A&A, 545, A32Google Scholar
Agertz, O., Teyssier, R., & Moore, B. 2011, MNRAS, 410, 1391Google Scholar
Asplund, M., Grevesse, N., & Sauval, A. J. 2005, Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis, 336, 25Google Scholar
Bensby, T., Feltzing, S., & Lundström, I. 2003, A&A, 410, 527Google Scholar
Bovy, J., Rix, H.-W., & Hogg, D. W. 2012a, ApJ, 751, 131Google Scholar
Bovy, J., Rix, H.-W., Liu, C., Hogg, D. W., Beers, T. C., & Lee, Y. S. 2012b, ApJ, 753, 148Google Scholar
Brook, C. B., Stinson, G. S., Gibson, B. K., et al. 2012, MNRAS, 426, 690Google Scholar
Calura, F., Gibson, B. K., Michel-Dansac, L., et al. 2012, MNRAS, 427, 1401Google Scholar
Zhao, G., Chen, Y.-Q., Shi, J.-R., et al. 2006, CJAA, 6, 265Google Scholar
de Jong, R. S., Bellido-Tirado, O., & Chiappini, C.et al. 2012, Procspie, 8446Google Scholar
Dehnen, W.: 2000, AJ, 119, 800CrossRefGoogle Scholar
Few, C. G., Courty, S., Gibson, B. K., et al. 2012, MNRAS, 424, L11Google Scholar
Freeman, K. C. 2010, Galaxies and their Masks, 319Google Scholar
Gilmore, G., Randich, S., Asplund, M.et al. 2012, The Messenger 147, 25Google Scholar
Guedes, J., Callegari, S., Madau, P., & Mayer, L. 2011, ApJ, 742, 76Google Scholar
Haywood, M., Di Matteo, P., Lehnert, M., Katz, D., & Gomez, A. 2013, arXiv:1305.4663Google Scholar
Kawata, D. & Gibson, B. K. 2003, MNRAS, 340, 908Google Scholar
Kobayashi, C., Springel, V., & White, S. D. M.: 2007, MNRAS, 376, 1465CrossRefGoogle Scholar
Kobayashi, C. & Nakasato, N. 2011, ApJ, 729, 16Google Scholar
Majewski, S. R., Wilson, J. C., Hearty, F., et al. 2010, in Cunha, K., Spite, M., & Barbuy, B. (eds.), IAU Symposium, Vol. 265 of IAU Symposium, pp 480–481Google Scholar
Martig, M., Bournaud, F., Croton, D. J., Dekel, A., & Teyssier, R. 2012, ApJ, 756, 26CrossRefGoogle Scholar
Martig, M., Bournaud, F., Teyssier, R., & Dekel, A.: 2009, ApJ, 707, 250Google Scholar
Minchev, I., Nordhaus, J., & Quillen, A. C.: 2007, ApJ (Letters), 664, L31Google Scholar
Minchev, I., Famaey, B., Quillen, A. C., et al. 2012a, A&A, 548, A126Google Scholar
Minchev, I., Famaey, B., Quillen, A. C., et al. 2012b, A&A, 548, 127Google Scholar
Minchev, I., Chiappini, C., & Martig, M. 2012c, arXiv:1208.1506Google Scholar
Navarro, J. F. and Benz, W. 1991, ApJ, 380, 320Google Scholar
Peng, C. Y., Ho, L. C., Impey, C. D., & Rix, H.-W.: 2002, AJ, 124, 266Google Scholar
Perryman, M. A. C., de Boer, K. S., Gilmore, G., et al. 2001, A&A, 369, 339Google Scholar
Raiteri, C. M., Villata, M., & Navarro, J. F.: 1996, A&A, 315, 105Google Scholar
Ramírez, I., Allende Prieto, C., & Lambert, D. L. 2013, ApJ, 764, 78CrossRefGoogle Scholar
Reddy, B. E., Lambert, D. L., & Allende Prieto, C. 2006, MNRAS, 367, 1329Google Scholar
Rix, H.-W. & Bovy, J. 2013, A&ARv, 21, 61Google Scholar
Sánchez, S. F., Kennicutt, R. C., Gil de Paz, A., et al. 2012, A&A, 538, A8Google Scholar
Scannapieco, C., Tissera, P. B., White, S. D. M., & Springel, V. 2005, MNRAS, 364, 552Google Scholar
Steinmetz, M., Zwitter, T., Siebert, , et al. 2006, AJ, 132, 1645Google Scholar
Tissera, P. B., White, S. D. M., & Scannapieco, C.: 2012, MNRAS, 420, 255Google Scholar
Wiersma, R. P. C., Schaye, J., Theuns, , et al. 2009, MNRAS, 399, 574Google Scholar
Yanny, B., RockosiC., N. H. J. C., N. H. J.et al. 2009, AJ, 137, 4377Google Scholar