Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T20:51:19.779Z Has data issue: false hasContentIssue false

Class I methanol masers in low-mass star formation regions

Published online by Cambridge University Press:  16 July 2018

S. Kalenskii
Affiliation:
Lebedev Physical Institute, Astro Space Center, 84/32 Profsoyuznaya st., Moscow, GSP-7, 117997, Russia email: kalensky@asc.rssi.ru
S. Kurtz
Affiliation:
Instituto de Radioastronomia y Astrofizika, Universidad Nacional Autonoma de Mexico, Morelia, Michoacan, Mexico email: s.kurtz@irya.unam.mx
P. Hofner
Affiliation:
National Radio Astronomy Observatory, 1003 Lopezville Road, Socorro, NM 87801, USA email: hofner_p@yahoo.com
P. Bergman
Affiliation:
Onsala Space Observatory, Chalmers Univ. of Technology, 439 92 Onsala, Sweden email: per.bergman@chalmers.se
C.M. Walmsley
Affiliation:
Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2, Ireland(deceased)
P. Golysheva
Affiliation:
119992, Universitetski pr., 13, Sternberg Astronomical Institute, Moscow University, Moscow, Russia email: polina-golysheva@yandex.ru
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a review of the properties of Class I methanol masers detected in low-mass star forming regions (LMSFRs). These masers, henceforth called LMMIs, are associated with postshock gas in the lobes of chemically active outflows in LMSFRs NGC1333, NGC2023, HH25, and L1157. LMMIs share the main properties with powerful masers in regions of massive star formation and are a low-luminosity edge of the total Class I maser population. However, the exploration of just these objects may push forward the exploration of Class I masers, since many LMSFRs are located only 200–300 pc from the Sun, making it possible to study associated objects in detail. EVLA observations with a 0.2″ spatial resolution show that the maser images consist of unresolved or barely resolved spots with brightness temperatures up to 5 × 105 K. The results are “marginally” consistent with the turbulent model of maser emission.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Bae, J.-H., Kim, K.-T., Youn, S.-Y., Kim, W.-J., Byun, D.-Y., & Kang, H., Oh, C. S. 2011, ApJS, 196, 21CrossRefGoogle Scholar
Haschick, A. D., Menten, K. M., & Baan, W. 1990, ApJ, 354, 556Google Scholar
Kalenskii, S. V., Promyslov, V. G., Slysh, V. I., Bergman, P., & Winnberg, A. 2006, Astron. Rep., 50, 289CrossRefGoogle Scholar
Kalenskii, S. V., Johansson, L. E. B., Bergman, P., Kurtz, S., Hofner, P., Walmsley, C. M., & Slysh, V. I. 2010a, MNRAS, 405, 613Google Scholar
Kalenskii, S. V., Kurtz, S., Slysh, V. I., Hofner, P., Walmsley, C. M., Johansson, L. E. B., & Bergman, P. 2010b, Astron. Rep., 54, 932Google Scholar
Kalenskii, S. V., Kurtz, S., Bergman, P. 2013, Astron. Rep., 57, 120Google Scholar
Kang, M., Lee, J.-E., Choi, M., Choi, Y., Kim, K.-T., Di Francesco, J., Park, Y.-S. 2013, ApJS, 209, 25CrossRefGoogle Scholar
Lyo, A.-R., Kim, J., Byun, D.-Y., & Lee, H.-G. 2014, AJ, 148, 80Google Scholar
Menten, K. M. 1991a, ApJ, 380, L75Google Scholar
Menten, K. M., 1991b, ASP Conference Series, 16, 119Google Scholar
Sobolev, A. M., Vallin, B. K., & Watson, W. D. 1998, ApJ, 498, 763CrossRefGoogle Scholar
Strelnitski, V. S., Holder, B. P., Shishov, V. I., & Nezhdanova, N. I., 2017, Astron. Astrophys Transactions, pressGoogle Scholar