Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Alves, M.V.
Echer, E.
and
Gonzalez, W.D.
2011.
Geoeffectiveness of solar wind interplanetary magnetic structures.
Journal of Atmospheric and Solar-Terrestrial Physics,
Vol. 73,
Issue. 11-12,
p.
1380.
Howard, Timothy A.
2011.
Three-dimensional reconstruction of coronal mass ejections using heliospheric imager data.
Journal of Atmospheric and Solar-Terrestrial Physics,
Vol. 73,
Issue. 10,
p.
1242.
Verbanac, G.
Vršnak, B.
Veronig, A.
and
Temmer, M.
2011.
Equatorial coronal holes, solar wind high-speed streams, and their geoeffectiveness.
Astronomy & Astrophysics,
Vol. 526,
Issue. ,
p.
A20.
Yakovchouk, O. S.
Mursula, K.
Holappa, L.
Veselovsky, I. S.
and
Karinen, A.
2012.
Average properties of geomagnetic storms in 1932–2009.
Journal of Geophysical Research: Space Physics,
Vol. 117,
Issue. A3,
Verbanac, G.
Živković, S.
Vršnak, B.
Bandić, M.
and
Hojsak, T.
2013.
Comparison of geoeffectiveness of coronal mass ejections and corotating interaction regions.
Astronomy & Astrophysics,
Vol. 558,
Issue. ,
p.
A85.
Wuensche, Carlos Alexandre
2014.
Handbook of Cosmic Hazards and Planetary Defense.
p.
1.
Wuensche, Carlos Alexandre
2015.
Handbook of Cosmic Hazards and Planetary Defense.
p.
99.
Oliveira, D. M.
Zesta, E.
Schuck, P. W.
and
Sutton, E. K.
2017.
Thermosphere Global Time Response to Geomagnetic Storms Caused by Coronal Mass Ejections.
Journal of Geophysical Research: Space Physics,
Vol. 122,
Issue. 10,
Ameri, Dheyaa
and
Valtonen, Eino
2017.
Earth-affecting Solar Transients.
p.
59.
Ameri, Dheyaa
and
Valtonen, Eino
2017.
Investigation of the Geoeffectiveness of Disk-Centre Full-Halo Coronal Mass Ejections.
Solar Physics,
Vol. 292,
Issue. 6,
Augusto, C. R. A.
Navia, C. E.
de Oliveira, M. N.
Nepomuceno, A. A.
Raulin, J. P.
Tueros, E.
de Mendonça, R. R. S.
Fauth, A. C.
Vieira de Souza, H.
Kopenkin, V.
and
Sinzi, T.
2018.
The 2015 Summer Solstice Storm: One of the Major Geomagnetic Storms of Solar Cycle 24 Observed at Ground Level.
Solar Physics,
Vol. 293,
Issue. 5,
Tshisaphungo, Mpho
Habarulema, John Bosco
and
McKinnell, Lee-Anne
2018.
Modeling ionosphericfoF2response during geomagnetic storms using neural network and linear regression techniques.
Advances in Space Research,
Vol. 61,
Issue. 12,
p.
2891.
Dashora, N.
Suresh, Sunanda
and
Niranjan, K.
2019.
Interhemispheric Asymmetry in Response of Low‐Latitude Ionosphere to Perturbation Electric Fields in the Main Phase of Geomagnetic Storms.
Journal of Geophysical Research: Space Physics,
Vol. 124,
Issue. 8,
p.
7256.
Seyoum, Alene
Gopalswamy, Nat
Nigussie, Melessew
and
Mezgebe, Nigusse
2019.
The impact of CMEs on the critical frequency of F2-layer ionosphere (foF2).
Proceedings of the International Astronomical Union,
Vol. 15,
Issue. S356,
p.
400.
Chertok, I. M.
2020.
On the Relationship Between the Transit Time of ICMEs and Strength of the Initiated Geomagnetic Storms.
Solar Physics,
Vol. 295,
Issue. 6,
Amaechi, Paul O.
Akala, Andrew O.
Oyedokun, Johnson O.
Simi, K. G.
Aghogho, O.
and
Oyeyemi, Elijah O.
2021.
Multi‐Instrument Investigation of the Impact of the Space Weather Events of 6–10 September 2017.
Space Weather,
Vol. 19,
Issue. 12,
Umuhire, A.C.
Uwamahoro, J.
Sasikumar Raja, K.
Kumari, A.
and
Monstein, C.
2021.
Trends and characteristics of high-frequency type II bursts detected by CALLISTO spectrometers.
Advances in Space Research,
Vol. 68,
Issue. 8,
p.
3464.
Michalek, Grzegorz
Gopalswamy, Nat
and
Yashiro, Seiji
2022.
Periodic Oscillations in LASCO Coronal Mass Ejection Speeds: Space Seismology.
The Astrophysical Journal Letters,
Vol. 927,
Issue. 1,
p.
L16.
Ye, Qian
Wang, Cong
He, Fei
Xue, Bingsen
and
Zhang, Xiaoxin
2022.
The Frequency‐Domain Characterization of Cosmic Ray Intensity Variations Before Forbush Decreases Associated With Geomagnetic Storms.
Space Weather,
Vol. 20,
Issue. 3,
Kumari, Anshu
2022.
Type IV Radio Bursts and Associated Active Regions in Sunspot Cycle 24.
Solar Physics,
Vol. 297,
Issue. 7,