Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T21:40:23.695Z Has data issue: false hasContentIssue false

Coherent structures and magnetic reconnection in photospheric and interplanetary magnetic field turbulence

Published online by Cambridge University Press:  24 September 2020

Rodrigo A. Miranda
Affiliation:
UnB-Gama Campus, and Institute of Physics, University of Brasília (UnB), BrasíliaDF70910-900, Brazil. email: mailto:rmiracer@unb.br
Abraham C.-L. Chian
Affiliation:
School of Mathematical Sciences, University of Adelaide, AdelaideSA5005, Australia. Institute for Space-Earth Environmental Research, Nagoya University, Nagoya464-8601, Japan. National Institute for Space Research (INPE), São José dos Campos SP12227-010, Brazil. Institute of Aeronautical Technology (ITA), São José dos Campos SP 12228-900, Brazil.
Erico L. Rempel
Affiliation:
National Institute for Space Research (INPE), São José dos Campos SP12227-010, Brazil. Institute of Aeronautical Technology (ITA), São José dos Campos SP 12228-900, Brazil.
Suzana S. A. Silva
Affiliation:
Institute of Aeronautical Technology (ITA), São José dos Campos SP 12228-900, Brazil.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper it is shown that rope-rope magnetic reconnection in the solar wind can enhance multifractality in the inertial subrange and drive intermittent magnetic field turbulence. Additionally, it is shown that Lagrangian coherent structures can unveil the transport barriers of magnetic elements in the quiet Sun.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Bellot Rubio, L & Orozco Suarez, D. 2019, Liv. Rev. Solar Phys., 16, 1.Google Scholar
Chian, A. C.-L. & Miranda, R. A. 2009, AnGeo, 27, 1789.Google Scholar
Chian, A. C.-L., Rempel, E. L., Aulanier, G., Schmieder, B., Shadden, S. C., Welsch, B. T. & Yeates, A. R. 2014, ApJ, 786, 51.Google Scholar
Chian, A, C.-L., Feng, H. Q., Hu, Q., Loew, H. M., Miranda, R. A., Muñoz, P. R., Sibeck, D, G., and Wu, D. J. 2016, ApJ, 832, 179.Google Scholar
Chian, A. C.-L., Silva, S. S. A., Rempel, E. L., Gošić, M., Bellot Rubio, R. L., Kusano, K., Miranda, R. A. & Requerey, I. S. 2019, MNRAS, 488, 3076.Google Scholar
Gošić, M., L. R. Bellot Rubio, D. Orozco Suárez, Y. Katsukawa & J. C. del, Toro Iniesta 2014, ApJ, 797, 49.CrossRefGoogle Scholar
Lazarian, A. & Vishniac, E. T., 1999 ApJ, 517, 700.CrossRefGoogle Scholar
Lazarian, A., Eyink, G., Vishniac, E. & Kowal, G. 2015, Phil. Trans. R. Soc. A, 373, 20140144.Google Scholar
November, L.-J. & Simon, G.-W. 1988, ApJ, 333, 427.Google Scholar
Molowny-Horas, R. 1994, Solar Phys., 154, 29.Google Scholar
Parker, E. N. 1957, J. Geophys, Res. 62, 509.Google Scholar
Petschek, H. E. 1964, AAS-NASA Symp., ed. W. H. Hess, 425Google Scholar
Requerey, I. S., Cobo, B. R. Gošić, M. & Bellot Rubio, L. R. 2018, A&A, 610, A84.Google Scholar
Sonnerup, B. U. Ö, Paschmann, G. Papamastorakis, I., Sckopke, N, Haerendel, G., Bame, S. J., Asbridge, J. R., Gosling, J. T. and Russell, C. T. 1981, J. Geophys. Res. 86, 10049.Google Scholar
Sweet, P. A. 1958 The Observatory 78, 30.Google Scholar
Treumann, R. A. & Baumjohann, W. 2013, Front. Phys. 1, 31.Google Scholar
Yamada, M., Kulsrud, R. & Ji, H. 2010, Rev. Modern Phys., 82, 603.Google Scholar
Yeates, A. R., Hornig, G., & Welsch, B. T. 2012, A&A, 539, A1.Google Scholar