Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T14:08:54.979Z Has data issue: false hasContentIssue false

The cold and warm physico-chemical structure of embedded protostars

Published online by Cambridge University Press:  04 September 2018

N. M. Murillo*
Affiliation:
Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA, Leiden, the Netherlands email: nmurillo@strw.leidenuniv.nl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The physical evolution of low-mass protostars is relatively well-established, however, there are many open questions on the chemical structure of protostars. The chemical fingerprint generated in the early embedded phase of star formation may be transmitted to the later stages of star, planet and comet formation. The factors that influence the chemical fingerprint are then of interest to study, and determine whether the chemical structure is inherited from the parent cloud or product of the physical processes during star formation. Results of observations and modelling of molecules that trace the cold and warm extended structures of embedded protostars are briefly presented here. Two multiple protostellar systems are studied, IRAS 16293-2422 and VLA 1623-2417, both located in ρ Ophiuchus. We find that the physical structure of the protostars, that is the disk(-like) strucutres, outflow cavity and different luminosities, are important factors in determining the chemical structure of these embedded protostars.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Chen, X., Launhardt, R., & Henning, T, 2009, ApJ, a 691, 1729Google Scholar
Crimier, N., Ceccarelli, C., Maret, S., Bottinelli, S. et al. 2010, A&A, 519, 65Google Scholar
Jørgensen, J. K., Schöier, F. L., & van Dishoeck, E. F., A&A, 389, 908Google Scholar
Jørgensen, J. K., Bourke, T. L., Nguyen Luong, Q., & Takakuwa, S., A&A, 534, 100Google Scholar
Jørgensen, J. K., van der Wiel, M. H. D., Coutens, A., Lykke, J. M. et al. 2016, A&A, 595, 117Google Scholar
López-Sepulcre, A., Sakai, N., Neri, R., Imai, M. et al. 2017, arXiv:1707.03745Google Scholar
Murillo, N. M., Lai, S.-P., Bruderer, S., Harsono, D., & van Dishoeck, E. F., 2013, A&A, 560, 103Google Scholar
Murillo, N. M., Bruderer, S., van Dishoeck, E. F., Walsh, C., et al. 2015, A&A, 579, 114Google Scholar
Persson, M. V., Jørgensen, J. K., & van Dishoeck, E. F., 2012, A&A, 541, 39Google Scholar
Punanova, A., Caselli, P., Pon, A., Belloche, A. & André, Ph., 2016 A&A, 587, 118Google Scholar
Oya, Y., Sakai, N., López-Sepulcre, A., Watanabe, Y., Ceccarelli, C. et al. 2016, ApJ, 824, 88Google Scholar
Sakai, Nami; S., T., Hirota, T., Watanabe, Y., Ceccarelli, C. et al. 2014, Nature, 507, 78Google Scholar