Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T18:39:33.304Z Has data issue: false hasContentIssue false

Common envelope evolution

Published online by Cambridge University Press:  30 August 2012

Robert G. Izzard
Affiliation:
Argelander-Insitut für Astronomie, Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germany
Philip D. Hall
Affiliation:
Institute of Astronomy, The Observatories, Madingley Road, Cambridge CB3 0HA, United Kingdom
Thomas M. Tauris
Affiliation:
Argelander-Insitut für Astronomie, Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germany Max-Plack-Insitut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
Christopher A. Tout
Affiliation:
Institute of Astronomy, The Observatories, Madingley Road, Cambridge CB3 0HA, United Kingdom
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Many binary star systems are not wide enough to contain the progenitor stars from which they were made. One explanation for this is that when one star becomes a red giant a common envelope forms around both stars in the binary system. The core of the giant and its companion star continue to orbit one another inside the envelope. Frictional energy deposited into the common envelope may lead to its ejection and, if so, a close binary system is formed from the core of the former giant star and its relatively untouched companion. When the primary is an asymptotic giant branch star the core becomes a hot carbon-oxygen white dwarf which may ionise the ejected envelope and illuminate a planetary nebula. Many other types of binary systems form through common envelope evolution such as low-mass X-ray binaries and cataclysmic variables. In the case of a failed envelope ejection when the cores merge, rapidly-rotating solitary giants similar to FK Comae stars form. In this short review we focus on attempts to constrain parameters of common envelope evolution models and also describe the latest efforts to model this elusive phase of binary stellar evolution.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Davis, P. J., Kolb, U., & Knigge, C. 2012, MNRAS, 419, 287 CrossRefGoogle Scholar
De Marco, O., Bond, H. E., Harmer, D., & Fleming, A. J. 2004, ApJL, 602, L93 CrossRefGoogle Scholar
De Marco, O., Passy, J. C., Moe, M., Herwig, F., Mac Low, M. M., & Paxton, B., 2011, MNRAS, 411, 2277 CrossRefGoogle Scholar
De Marco, O., Sandquist, E. L., Mac Low, M. M., Herwig, F., & Taam, R. E., 2003, Rev. Mexicana AyA-CS, 18, 24 Google Scholar
de Ruyter, S., van Winckel, H., Maas, T., Lloyd Evans, T., Waters, L. B. F. M., & Dejonghe, H., 2006, A&A, 448, 641 Google Scholar
Dewi, J. D. M. & Tauris, T. M., 2000, A&A, 360, 1043 Google Scholar
Geier, S., Napiwotzki, R., Heber, U., & Nelemans, G., 2011, A&A, 528, L16 Google Scholar
Han, Z., Podsiadlowski, P., & Eggleton, P. P., 1995, MNRAS, 272, 800 Google Scholar
Iben, I. Jr., 1993, ApJ, 415, 767.CrossRefGoogle Scholar
Iben, I. Jr. & Livio, M., 1993, PASP, 105, 1373 CrossRefGoogle Scholar
Ivanova, N., 2011, Evolution of Compact Binaries, 447, 91 Google Scholar
Ivanova, N., 2011, ApJ, 730, 76.CrossRefGoogle Scholar
Ivanova, N. & Chaichenets, S., 2011, ApJ 731 L36.CrossRefGoogle Scholar
Ivanova, N. & Podsiadlowski, P., 2002, Ap&SS, 281, 191 Google Scholar
Izzard, R. G., Jeffery, C. S., & Lattanzio, J., 2007, A&A, 470, 661 Google Scholar
Kashi, A. & Soker, N., 2011, MNRAS, 417, 1466 CrossRefGoogle Scholar
Knigge, C., 2011, Evolution of Compact Binaries, 447, 3 Google Scholar
Loveridge, A. J., van der Sluys, M. V., & Kalogera, V., 2011, ApJ, 743, 49 CrossRefGoogle Scholar
Meyer, F. & Meyer-Hofmeister, E., 1979, A&A, 78, 167 Google Scholar
Miszalski, B., Acker, A., Moffat, A. F. J., Parker, Q. A., & Udalski, A., 2009, A&A, 496, 813 Google Scholar
Moe, M. & De Marco, O., 2006, ApJ, 650, 916 CrossRefGoogle Scholar
Nelemans, G., 2005, ASP-CS, 330, 27.Google Scholar
Nelemans, G., Napiwotzki, R., Karl, C., Marsh, T. R., Voss, B., Roelofs, G., Izzard, R. G., Montgomery, M., Reerink, T., Christlieb, N., & Reimers, D., 2005, A&A, 440, 1087 Google Scholar
Nelemans, G. & Tauris, T. M., 1998, A&A, 335, L85 Google Scholar
Nelemans, G. & Tout, C. A., 2005, MNRAS, 356, 753 CrossRefGoogle Scholar
Nelemans, G., Verbunt, F., Yungelson, L. R. & Portegies Zwart, S. F., 2000, A&A, 360, 1011 Google Scholar
Paczyński, B., 1971, ARA&A, 9, 183.Google Scholar
Paczyński, B., 1976, IAU Symp. 73: Structure and Evolution of Close Binary Systems, p. 75.CrossRefGoogle Scholar
Passy, J. C., De Marco, O., Fryer, C. L., Herwig, F., Diehl, S., Oishi, J. S., Mac Low, M. M., Bryan, G. L., & Rockefeller, G., 2011, Evolution of Compact Binaries, 447, 107 Google Scholar
Passy, J. C., Herwig, F., & Paxton, B., 2011, ArXiv e-prints, 1111.4202.Google Scholar
Piersanti, L., Cabezón, R. M., Zamora, O., Domínguez, I., García-Senz, D., Abia, C., & Straniero, O., 2010, A&A 522 A80.Google Scholar
Podsiadlowski, P., 2001, ASP-CS 229, 239.Google Scholar
Podsiadlowski, P., Ivanova, N., Justham, S., & Rappaport, S., 2010, MNRAS, 406, 840 Google Scholar
Politano, M., Taam, R. E., van der Sluys, M., & Willems, B., 2008, ApJ, 687, L99 CrossRefGoogle Scholar
Politano, M., van der Sluys, M., Taam, R. E., & Willems, B., 2010, ApJ, 720, 1752 CrossRefGoogle Scholar
Ricker, P. M. & Taam, R. E., 2008, ApJ, 672, L41 CrossRefGoogle Scholar
Ricker, P. M. & Taam, R. E., 2012, ApJ, 746, 74 CrossRefGoogle Scholar
Sandquist, E. L., Taam, R. E., & Burkert, A., 2000, ApJ, 533, 984 CrossRefGoogle Scholar
Sandquist, E. L., Taam, R. E., Chen, X., Bodenheimer, P., & Burkert, A., 1998, ApJ, 500, 909 CrossRefGoogle Scholar
Soker, N., 2006, ApJ, 645, L57 CrossRefGoogle Scholar
Soker, N. & Livio, M., 1994, ApJ, 421, 219 CrossRefGoogle Scholar
Stancliffe, R. J., Chieffi, A., Lattanzio, J. C., & Church, R. P., 2009, PASA, 26, 203 CrossRefGoogle Scholar
Taam, R. E. & Ricker, P. M., 2010, New Astron. Revs, 54, 65 CrossRefGoogle Scholar
Taam, R. E. & Sandquist, E. L., 2000, ARA&A, 38, 113 Google Scholar
Tauris, T. M. & Dewi, J. D. M., 2001, A&A, 369, 170 Google Scholar
Thorne, K. S. & Żytkow, A. N., 1975, ApJ, 199, L19 CrossRefGoogle Scholar
Tout, C. A. & Regős, E., 2003, ASP-CS, 293, 100 Google Scholar
Tylenda, R., Hajduk, M., Kamiński, T., Udalski, A., Soszyński, I., Szymański, M. K., Kubiak, M., Pietrzyński, G., Poleski, R., Wyrzykowski, Ł., & Ulaczyk, K., 2011, A&A, 528, A114 Google Scholar
van Winckel, H., Deroo, P., Gielen, C., Reyniers, M., van Aarle, E., & Vidal, E., 2008, AIP-CS, 1001, 349 Google Scholar
Warner, B., 1995, Cambridge University Press.Google Scholar
Webbink, R. F., 1984, ApJ, 277, 355 CrossRefGoogle Scholar
Webbink, R. F., 2008, Ap&SS, 352, 233.Google Scholar
Woods, T. E. & Ivanova, N., 2011, ApJ 739 L48.CrossRefGoogle Scholar
Woods, T.E., Ivanova, N., van der Sluys, M. & Chaichenets, S. Evolution of Compact Binaries, 447, 127 Google Scholar
Xu, X. J. & Li, X. D., 2010, ApJ, 716, 114 CrossRefGoogle Scholar
Yungelson, L. R., Tutukov, A. V., & Livio, M., 1993, ApJ, 418, 794.CrossRefGoogle Scholar
Zorotovic, M., Schreiber, M. R., Gänsicke, B. T. & Nebot Gómez-Morán, A., 2010, A&A 520 A86.Google Scholar