Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T18:21:41.910Z Has data issue: false hasContentIssue false

Common envelope: progress and transients

Published online by Cambridge University Press:  28 July 2017

Natalia Ivanova*
Affiliation:
Department of Physics, University of Alberta, Edmonton AB T6G 2E1Canada email: nata.ivanova@ualberta.ca
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We review the fundamentals and the recent developments in understanding of common envelope physics. We report specifically on the progress that was made by the consideration of the recombination energy. This energy is found to be responsible for the complete envelope ejection in the case of a prompt binary formation, for the delayed dynamical ejections in the case of a self-regulated spiral-in, and for the steady recombination outflows during the transition between the plunge-in and the self-regulated spiral-in. Due to different ways how the recombination affects the common envelope during fast and slow spiral-ins, the apparent efficiency of the orbital energy use can be different between the two types of spiral-ins by a factor of ten. We also discuss the observational signatures of the common envelope events, their link a new class of astronomical transients, Luminous Red Novae, and to a plausible class of very luminous irregular variables.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Akashi, M. & Soker, N., 2016, MNRAS, 462, 206 Google Scholar
Bondi, H. & Hoyle, F., 1944, MNRAS, 104, 273 Google Scholar
Bondi, H., 1952, MNRAS, 112, 195 Google Scholar
Clayton, M., Podsiadlowski, P., Ivanova, N., & Justham, S. 2017, MNRAS, accepte, arXiv:1705.08457Google Scholar
Deloye, C. J. & Taam, R. E., 2010, ApJ (Letters), 719, L28 Google Scholar
De Marco, O., Passy, J.-C., Moe, M., et al. 2011, MNRAS, 411, 2277 Google Scholar
Dewi, J. D. M. & Tauris, T. M. 2000, A&A, 360, 1043 Google Scholar
Han, Z., Podsiadlowski, P., & Eggleton, P. P., 1994, MNRAS, 270, 121 Google Scholar
Han, Z., Podsiadlowski, P., Maxted, P. F. L., Marsh, T. R., & Ivanova, N., 2002, MNRAS, 336, 449 Google Scholar
Hoyle, F. & Lyttleton, R. A., 1939, Proceedings of the Cambridge Philosophical Society, 34, 405 Google Scholar
Ivanova, N. 2002, Ph.D. ThesisGoogle Scholar
Ivanova, N., 2011a, ApJ, 730, 76 Google Scholar
Ivanova, N., 2011b, Evolution of Compact Binaries, 447, 91 Google Scholar
Ivanova, N. & Chaichenets, S., 2011, ApJ (Letters), 731, L36 Google Scholar
Ivanova, N., Justham, S., Avendano Nandez, J. L., & Lombardi, J. C., 2013, Science, 339, 433 Google Scholar
Ivanova, N., Justham, S., Chen, X., et al. 2013, A&ARv, 21, 59 Google Scholar
Ivanova, N., Justham, S., & Podsiadlowski, P., 2015, MNRAS, 447, 2181 Google Scholar
Ivanova, N. & Nandez, J. L. A., 2016, MNRAS, 462, 362 Google Scholar
Livio, M. & Soker, N., 1988, ApJ, 329, 764 Google Scholar
Lucy, L. B., 1967, AJ, 72, 813 Google Scholar
MacLeod, M. & Ramirez-Ruiz, E., 2015a, ApJ (Letters), 798, L19 Google Scholar
MacLeod, M. & Ramirez-Ruiz, E., 2015b, ApJ, 803, 41 Google Scholar
MacLeod, M., Macias, P., Ramirez-Ruiz, E., et al. 2017, ApJ, 835, 282 Google Scholar
Marsh, T. R., Dhillon, V. S., & Duck, S. R., 1995, MNRAS, 275, 828 Google Scholar
Meyer, F. & Meyer-Hofmeister, E. 1979, A&A, 78, 167 Google Scholar
Nandez, J. L. A., Ivanova, N., & Lombardi, J. C. Jr. 2014, ApJ, 786, 39 Google Scholar
Nandez, J. L. A., Ivanova, N., & Lombardi, J. C., 2015, MNRAS, 450, L39 Google Scholar
Nandez, J. L. A. & Ivanova, N., 2016, MNRAS, 460, 3992 Google Scholar
Nordhaus, J. & Blackman, E. G., 2006, MNRAS, 370, 2004 Google Scholar
Nordhaus, J., Blackman, E. G., & Frank, A., 2007, MNRAS, 376, 599 Google Scholar
Ohlmann, S. T., Röpke, F. K., Pakmor, R., & Springel, V., 2016a, ApJ (Letters), 816, L9 Google Scholar
Ohlmann, S. T., Röpke, F. K., Pakmor, R., Springel, V., & Müller, E., 2016b, MNRAS, 462, L121 Google Scholar
Ohlmann, S. T., Roepke, F. K., Pakmor, R., & Springel, V. 2017, A&A Google Scholar
Passy, J.-C., De Marco, O., Fryer, C. L., et al. 2012, ApJ, 744, 52 Google Scholar
Pavlovskii, K. & Ivanova, N., 2015, MNRAS, 449, 4415 Google Scholar
Pavlovskii, K., Ivanova, N., Belczynski, K., & Van, K. X., 2017, MNRAS, 465, 2092 Google Scholar
Podsiadlowski, P., 2001, Evolution of Binary and Multiple Star Systems, 229, 239 Google Scholar
Podsiadlowski, P., Ivanova, N., Justham, S., & Rappaport, S., 2010, MNRAS, 406, 840 Google Scholar
Popov, D. V., 1993, ApJ, 414, 712 Google Scholar
Ricker, P. M. & Taam, R. E., 2008, ApJ (Letters), 672, L41 Google Scholar
Ricker, P. M. & Taam, R. E., 2012, ApJ, 746, 74 Google Scholar
Roxburgh, I. W., 1967, Nature, 215, 838 Google Scholar
Shiber, S., Kashi, A., & Soker, N., 2017, MNRAS, 465, L54 Google Scholar
Soker, N. & Harpaz, A., 2003, MNRAS, 343, 456 Google Scholar
Staff, J. E., De Marco, O., Wood, P., Galaviz, P., & Passy, J.-C., 2016, MNRAS, 458, 832 Google Scholar
Taam, R. E., Bodenheimer, P., & Ostriker, J. P., 1978, ApJ, 222, 269 Google Scholar
Tylenda, R., Hajduk, M., Kamiński, T., et al. 2011, A&A, 528, A114 Google Scholar
van der Sluys, M. V., Verbunt, F., & Pols, O. R. 2006, A&A, 460, 209 Google Scholar
Webbink, R. F., 1984, ApJ, 277, 355 Google Scholar