Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T18:37:27.847Z Has data issue: false hasContentIssue false

Composition of matter in the heliosphere

Published online by Cambridge University Press:  01 September 2008

Peter Bochsler*
Affiliation:
Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012, Bern, Switzerland Space Science Center, EOS, University of New Hampshire, Durham NH, USA email: bochsler@soho.unibe.ch
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Sun is by far the largest reservoir of matter in the solar system and contains more than 99% of the mass of the solar system. Theories on the formation of the solar system maintain that the gravitational collapse is very efficient and that typically not more than one tenth from the solar nebula is lost during the formation process. Consequently, the Sun can be considered as a representative sample of interstellar matter taken from a well mixed reservoir 4.6 Gy ago, at about 8 kpc from the galactic center. At the same time, the Sun is also a faithful witness of the composition of matter at the beginning of the evolution of the solar system and the formation of planets, asteroids, and comets. Knowledge on the solar composition and a fair account of the related uncertainties is relevant for many fields in astrophysics, planetary sciences, cosmo- and geochemistry. Apart from the basic interest in the chemical evolution of the galaxy and the solar system, compositional studies have also led to many applications in space research, i.e., it has helped to distinguish between different components of diffuse heliospheric matter. The elemental, isotopic, and charge state composition of heliospheric particles (solar wind, interstellar neutrals, pickup ions) has been used for a multitude of applications, such as tracing the source material, constraining parameters for models of the acceleration processes, and of the transport through the interplanetary medium. It is important to realize, that the two mainstream applications, as outlined above – geochemistry and cosmochemistry on one side, and tracing of heliospheric processes on the other side – are not independent of each other. Understanding the physical processes, e.g., of the fractionation of the solar wind, is crucial for the interpretation of compositional data; on the other hand, reliable information on the source composition is the basis for putting constraints on models of the solar wind fractionation.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Aellig, M. R., Hefti, S., Grünwaldt, H., et al. 1999a, J. Geophys. Res., 104, 24,769CrossRefGoogle Scholar
Aellig, M. R., Holweger, H., Bochsler, P., et al. 1999b, in Solar Wind Nine, ed. Habbal, S. R., Esser, R., Hollweg, J. V., & Isenberg, P. A. (AIP Proceedings 471), 255–258Google Scholar
Allegrini, F., Schwadron, N. A., McComas, D. J., Gloeckler, G., & Geiss, J. 2005, J. Geophys. Res., 110, A05105, doi:10.1029Google Scholar
Anders, E. & Grevesse, N. 1989, Geochim. Cosmochim. Acta, 53, 197CrossRefGoogle Scholar
Antia, H. M. & Basu, S. 2006, Astrophys. J., 644, 1292CrossRefGoogle Scholar
Asplund, M., Grevesse, N., & Sauval, A. J. 2005, in ASP Conf. Ser. 336: Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis, ed. Barnes, T. G. & Bash, F. N., 25Google Scholar
Bahcall, J. N., Basu, S., & Serenelli, A. M. 2005, Astrophys. J., 631, 1281CrossRefGoogle Scholar
Bochsler, P. 1984, Habilitationsschrift, University of BernGoogle Scholar
Bochsler, P. 1989, J. Geophys. Res., 94, 2365CrossRefGoogle Scholar
Bochsler, P. 2007a, Astron. Astrophys. Rev., 14, 1CrossRefGoogle Scholar
Bochsler, P. 2007b, Astron. Astrophys., 471, 315CrossRefGoogle Scholar
Bochsler, P., Auchère, F., & Skoug, R. M. 2006, in Proc. SOHO 17 Conference, Taormina (ESA SP 617)Google Scholar
Bochsler, P., Geiss, J., & Kunz, S. 1986, Solar Phys., 103, 177CrossRefGoogle Scholar
Bochsler, P., Gonin, M., Sheldon, R. B., et al. 1996, in Solar Wind Eight. Proceedings of the Eighth International Solar Wind Conference, ed. Winterhalter, D., Gosling, J. T., Habbal, S. R., Kurth, W. S., & Neugebauer, M., Vol. 382 (Woodbury, N.Y., USA: American Institute of Physics), 199–202Google Scholar
Bochsler, P., Ipavich, F. M., Paquette, J. A., Weygand, J. M., & Wurz, P. 2000, J. Geophys. Res., 105, 12659CrossRefGoogle Scholar
Bochsler, P., Möbius, E., & Wimmer-Schweingruber, R. F. 2007, in Proc. Second Solar Orbiter Conference, Athens (ESA SP-641)Google Scholar
Bodmer, R. & Bochsler, P. 2000, J. Geophys. Res., 105, 47CrossRefGoogle Scholar
Bürgi, A. & Geiss, J. 1986, Solar Phys., 103, 347CrossRefGoogle Scholar
Burnett, D. S., Barraclough, B. L., Bennett, R., et al. 2003, Space Sci. Rev., 105, 509CrossRefGoogle Scholar
Cerutti, H. 1974, PhD Thesis, University of Bern, SwitzerlandGoogle Scholar
Collier, M. R., Moore, T. E., Ogilvie, K., et al. 2003, in Proceedings of the Tenth International Solar Wind Conference, ed. Velli, M., Bruno, R., & Malara, F. (Melville, New York: AIP Proceedings 679), 790–793Google Scholar
Collier, M. R., Moore, T. E., Ogilvie, K. W., et al. 2001, J. Geophys. Res., 106, 24,893Google Scholar
Cummings, A. C., Stone, E. C., & Steenberg, C. D. 2002, Astrophys. J., 578, 194CrossRefGoogle Scholar
Fisk, L. A., Kozlovsky, B., & Ramaty, R. 1974, Astrophys. J., 190, L35CrossRefGoogle Scholar
Geiss, J., Bühler, F., Cerutti, H., Eberhardt, P., & Filleux, C. 1972, Apollo 16 Prel. Sci. Rep. NASA Special Publication, 315, 14.1Google Scholar
Geiss, J., Bühler, F., Cerutti, H., et al. 2004, Space Sci. Rev., 110, 307CrossRefGoogle Scholar
Geiss, J., Gloeckler, G., & von Steiger, R. 1996, Space Sci. Rev., 78, 43CrossRefGoogle Scholar
Geiss, J., Hirt, P., & Leutwyler, H. 1970, Solar Phys., 12, 458CrossRefGoogle Scholar
Giammanco, C., Bochsler, P., Karrer, R., et al. 2007, Space Sci. Rev., 130, 329CrossRefGoogle Scholar
Giammanco, C., Wurz, P., & Karrer, R. 2008, Astrophys. J., 681, 1703CrossRefGoogle Scholar
Gloeckler, G., Fisk, L. A., Geiss, J., Schwadron, N. A., & Zurbuchen, T. H. 2000, J. Geophys. Res., 105, 7459Google Scholar
Gloeckler, G. & Geiss, J. 2001, in Acceleration and transport of energetic particles observed in the Heliosphere, ed. Mewaldt, R. A., Jokipii, J. R., Lee, M. A., Moebius, E., & Zurbuchen, T. H., Vol. 528 (Woodbury, N.Y.: American Institute of Physics), 281–Google Scholar
Gloeckler, G., Ipavich, F. M., Hamilton, D. C., et al. 1986, Geophys. Res. Lett., 13, 793CrossRefGoogle Scholar
Gough, D. O. 2007, Astron. Nachr./AN, 328, 273CrossRefGoogle Scholar
Grimberg, A., Baur, H., Bochsler, P., et al. 2006, Science, 314, 1133CrossRefGoogle Scholar
Grimberg, A., Baur, H., Bühler, F., Bochsler, P., & Wieler, R. 2008, Geochim. Cosmochim. Acta, 72, 626CrossRefGoogle Scholar
Ipavich, F. M., Bochsler, P., Lasley, S. E., Paquette, J. E., & Wurz, P. 1999, EOS Trans. AGU, 80, 256Google Scholar
Ipavich, F. M., Paquette, J. A., Bochsler, P., Lasley, S. E., & Wurz, P. 2001, in Solar and Galactic Composition, ed. Wimmer-Schweingruber, R. F., Vol. CP-598 (Melville, N.Y.: AIP Conf. Proceedings), 121–126Google Scholar
Kallenbach, R., Ipavich, F. M., Kucharek, H., et al. 1998, Space Sci. Rev., 85, 357CrossRefGoogle Scholar
Karrer, R., Bochsler, P., Giammanco, C., et al. 2007, Space Sci. Rev., 130, 317CrossRefGoogle Scholar
Kasper, J. C., Stevens, M. L., Lazarus, A. J., Steinberg, J. T., & Ogilvie, K. W. 2007, Astrophys. J., 660, 901CrossRefGoogle Scholar
Kehm, K., Flynn, G. J., & Hohenberg, C. M. 2006, Meteoritics and Planetary Sciences, 41, 1199CrossRefGoogle Scholar
Kern, O. 1999, PhD Thesis, University of Bern, SwitzerlandGoogle Scholar
Kern, O., Wimmer-Schweingruber, R. F., Bochsler, P., Gloeckler, G., & Hamilton, D. C. 1997, in Proceedings of the 31st ESLAB Symp., ‘Correlated Phenomena at the Sun, in the Heliosphere and in Geospace’, Workshop on Plasma Dynamics and Diagnostics in the Solar Transition Region and Corona (ESA SP-415), 345–348Google Scholar
Kucharek, H., Ipavich, F. M., Kallenbach, R., et al. 1998, 103, 26'805CrossRefGoogle Scholar
Leinert, C. & Grün, E. 1990, In: Physics of the Inner Heliosphere, ed. Schwenn, R. & Marsch, E. (Berlin Heidelberg: Springer-Verlag), 207–275CrossRefGoogle Scholar
Mewaldt, R. A., Ogliore, R. C., Gloeckler, G., & Mason, G. M. 2001, in Solar and Galactic Composition, ed. Wimmer-Schweingruber, R. F., Vol. CP-598 (Melville, N.Y.: AIP Conf. Proceedings), 393–398Google Scholar
Mewaldt, R. A., Cohen, C. M., Mason, G. M., Haggerty, D. K., & Desai, M. I. 2007, Space Sci. Rev., 130, 323CrossRefGoogle Scholar
Noci, G. & Porri, A. 1983, IAGA, Hamburg, paper 4L.04 presented at the 18th General Assembly MeetingGoogle Scholar
Owocki, S. P., Holzer, T. E., & Hundhausen, A. J. 1983, Astrophys. J., 275, 354CrossRefGoogle Scholar
Paquette, J. A., Ipavich, F. M., Lasley, S. E., Bochsler, P., & Wurz, P. 2001, in Solar and Galactic Composition, ed. Wimmer-Schweingruber, R. F., Vol. CP-598 (Melville, N.Y.: AIP Conf. Proceedings), 95–100Google Scholar
Reames, D. V. 1999, Astrophys. J., 518, 473CrossRefGoogle Scholar
Schmid, J., Bochsler, P., & Geiss, J. 1988, Astrophys. J., 329, 956CrossRefGoogle Scholar
Schwadron, N. A., Combi, M., Huebner, W., & McComas, D. J. 2002, Geophys. Res. Lett., 29, doi:10.1029/2002GL015829Google Scholar
Slavin, J. D. & Frisch, P. C. 2002, Astrophys. J., 565, 364CrossRefGoogle Scholar
von Steiger, R., Schwadron, N. A., Hefti, S., et al. 2000, J. Geophys. Res., 105, 27,217CrossRefGoogle Scholar
Weygand, J. M., Ipavich, F. M., Wurz, P., Paquette, J. A., & Bochsler, P. 2001, in Solar and Galactic Composition, ed. Wimmer-Schweingruber, R. F., Vol. CP-598 (Melville, N.Y.: AIP Conf. Proceedings), 101–106Google Scholar
Wieler, R., Baur, H., & Signer, P. 1986, Geochmim. Cosmochim. Acta, 50, 1997CrossRefGoogle Scholar
Wurz, P. 2000, in The outer heliospere: Beyond the planets, ed. Scherer, K., Fichtner, H., & Marsch, E. (Katlenburg-Lindau, Germany: Copernicus Gesellschaft e.V.), 251–288Google Scholar
Wurz, P., Bochsler, P., Paquette, J. A., & Ipavich, F. M. 2003, Astrophys. J., 583, 489CrossRefGoogle Scholar
Young, P. R. 2005, Astron. Astrophys., 444, L45CrossRefGoogle Scholar
Ziegler, J. 2004, Nucl. Instr. and Methods in Phys. Res. B, 219–220, 1027CrossRefGoogle Scholar