Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-13T12:20:46.991Z Has data issue: false hasContentIssue false

Connecting black holes and galaxies in faint radio populations at cosmic noon

Published online by Cambridge University Press:  04 June 2020

Stacey Alberts
Affiliation:
Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA email: salberts@email.arizona.edu
Wiphu Rujopakarn
Affiliation:
Department of Physics, Faculty of Science, Chulalongkorn University 254 Phayathai Road, Pathumwam, Bangkok 10330, Thailand
George H. Rieke
Affiliation:
Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA email: salberts@email.arizona.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We leverage new ultra-deep, high resolution, multi-frequency radio imaging at 6 and 3 GHz with the unique datasets available in the GOODS-S/HUDF region in order to assess the AGN fraction in a faint radio-selected sample. For AGN identification, we adopt a multi-wavelength approach, combining X-ray and (mid-)infrared (IR) selections with radio identification such as X-ray to radio excess, flat radio spectral slopes, and the radio-IR correlation. We identify AGN in 43% of our radio sample, yielding an AGN source density of ∼ 1 arcmin−2. This AGN fraction is likely underestimated, as 1) our shallower 3 GHz data is biased against flat radio spectrum sources and 2) all of our selections may be biased against the most heavily obscured AGN. The James Webb Space Telescope’s Mid-Infrared Instrument (MIRI) will address the latter issue and we briefly outline our Cycle 1 Guaranteed Time Observation (GTO) program to search for heavily obscured AGN.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Alexander, D. M., Bauer, F. E., Chapman, S. C., et al. 2005, ApJ, 632, 73610.1086/444342CrossRefGoogle Scholar
Assef, R. J., Kochanek, C. S., Brodwin, M., et al. 2010, ApJ, 713, 97010.1088/0004-637X/713/2/970CrossRefGoogle Scholar
Bonzini, M., Padovani, P., Mainieri, V., et al. 2013, MNRAS, 436, 375910.1093/mnras/stt1879CrossRefGoogle Scholar
Bouchet, P., Garca-Marn, M., Lagage, P.-O., et al. 2015, PASP, 127, 61210.1086/682254CrossRefGoogle Scholar
Condon, J. J. 1992, ARAA, 30, 57510.1146/annurev.aa.30.090192.003043CrossRefGoogle Scholar
Chung, S. M., Kochanek, C. S., Assef, R., et al. 2014, ApJ, 790, 5410.1088/0004-637X/790/1/54CrossRefGoogle Scholar
Delvecchio, I., Smolčić, V., Zamorani, G., et al. 2017, A&A, 602, A3Google Scholar
Elvis, M., Wilkes, B. J., McDowell, J. C., et al. 1994, ApJS, 95, 110.1086/192093CrossRefGoogle Scholar
Gim, H. B., Yun, M. S., Owen, F. N., et al. 2019, ApJ, 875, 8010.3847/1538-4357/ab1011CrossRefGoogle Scholar
Hickox, R. C. & Alexander, D. M. 2018, ARAA, 56, 62510.1146/annurev-astro-081817-051803CrossRefGoogle Scholar
Kirkpatrick, A., Alberts, S., Pope, A., et al. 2017, ApJ, 849, 11110.3847/1538-4357/aa911dCrossRefGoogle Scholar
Kormendy, J. & Ho, L. C. 2013, ARAA, 51, 51110.1146/annurev-astro-082708-101811CrossRefGoogle Scholar
Lansbury, G. B., Gandhi, P., Alexander, D. M., et al. 2015, ApJ, 809, 11510.1088/0004-637X/809/2/115CrossRefGoogle Scholar
Lehmer, B. D., Basu-Zych, A. R., Mineo, S., et al. 2016, ApJ, 825, 710.3847/0004-637X/825/1/7CrossRefGoogle Scholar
Luo, B., Brandt, W. N., Xue, Y. Q., et al. 2017, ApJS, 228, 210.3847/1538-4365/228/1/2CrossRefGoogle Scholar
Madau, P. & Dickinson, M. 2014, ARAA, 52, 41510.1146/annurev-astro-081811-125615CrossRefGoogle Scholar
Magorrian, J., Tremaine, S., Richstone, D., et al. 1998, AJ, 115, 228510.1086/300353CrossRefGoogle Scholar
Mendez, A. J., Coil, A. L., Aird, J., et al. 2013, ApJ, 770, 4010.1088/0004-637X/770/1/40CrossRefGoogle Scholar
Padovani, P. 2016, A&A Rev., 24, 13Google Scholar
Rieke, G. H., Alonso-Herrero, A., Weiner, B. J., et al. 2009, ApJ, 692, 55610.1088/0004-637X/692/1/556CrossRefGoogle Scholar
Skelton, R. E., Whitaker, K. E., Momcheva, I. G., et al. 2014, ApJS, 214, 2410.1088/0067-0049/214/2/24CrossRefGoogle Scholar
Sorba, R., & Sawicki, M. 2010, ApJ, 721, 105610.1088/0004-637X/721/2/1056CrossRefGoogle Scholar
Stern, D., Eisenhardt, P., Gorjian, V., et al. 2005, ApJ, 631, 16310.1086/432523CrossRefGoogle Scholar
Tisanić, K., Smolčić, V., Delhaize, J., et al. 2019, A&A, 621, A139Google Scholar
Vito, F., Maiolino, R., Santini, P., et al. 2014, MNRAS, 441, 105910.1093/mnras/stu637CrossRefGoogle Scholar
Yun, M. S., Reddy, N. A., & Condon, J. J. 2001, ApJ, 554, 80310.1086/323145CrossRefGoogle Scholar