Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-14T18:56:27.439Z Has data issue: false hasContentIssue false

Constraining the Formation and Mass of the Milky Way Halo using Globular Cluster Orbits from HST Proper Motions

Published online by Cambridge University Press:  02 August 2018

S. Tony Sohn
Affiliation:
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore 21218, USA email:tsohn@stsci.edu
Roeland P. van der Marel
Affiliation:
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore 21218, USA email:tsohn@stsci.edu
Alis Deason
Affiliation:
Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham DH1 3LE, UK
Andrea Bellini
Affiliation:
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore 21218, USA email:tsohn@stsci.edu
Gurtina Besla
Affiliation:
Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA
Laura Watkins
Affiliation:
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore 21218, USA email:tsohn@stsci.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The globular cluster (GC) system of the Milky Way (MW) provides important information on the MW’s present structure and past evolution. Full 3d motions, accessed through proper motions (PMs), are required to calculate accurate orbits of GCs in the MW halo. We present our HST program to create a PM database for 20 halo GCs. We demonstrate how the observed PMs of individual GCs can be used to study their origins, and we also describe how the PM measurements of our entire targets can be used to constrain the anisotropy profile. Finally, we describe how our PM results can be used for Gaia as an external check, and discuss prospects of PM measurements with HST and Gaia in the coming years.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Dotter, A., Sarajedini, A. & Anderson, J. 2011 ApJ, 738, 74Google Scholar
Law, D. R. & Majewski, S. R. 2010a ApJ, 714, 229Google Scholar
Law, D. R. & Majewski, S. R. 2010b ApJ, 718, 1128Google Scholar
Majewski, S. R., Skrutskie, M. F., Weinberg, M. D. & Ostheimer, J. C. 2003 ApJ, 599, 1082Google Scholar
Marín-Franch, A., Aparicio, A., Piotto, G., et al. 2009 ApJ, 694, 1498Google Scholar
Pancino, E., Bellazzini, M., Giuffrida, G. & Marino, S. 2017 MNRAS, 467, 412Google Scholar
Sarajedini, A., Bedin, L. R., Chaboyer, B. et al. 2007 AJ, 133, 1658Google Scholar
Sohn, S. T., Anderson, J., & van der Marel, R. P., 2012, ApJ, 753, 7Google Scholar
Sohn, S. T., Besla, G., van der Marel, R. P., et al. 2013, ApJ, 768, 139Google Scholar
Sohn, S. T., van der Marel, R. P., Carlin, J. L., et al. 2015, ApJ, 803, 56Google Scholar
Sohn, S. T., van der Marel Kallivayalil, N., et al., 2016, ApJ, 833, 235Google Scholar