Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-13T09:48:58.354Z Has data issue: false hasContentIssue false

Constraining the Intergalactic Medium Enrichment History with QSO Pairs

Published online by Cambridge University Press:  09 March 2010

Evan Scannapieco
Affiliation:
School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ, 85287–1404 email: evan.scannapieco@asu.edu
Crystal L. Martin
Affiliation:
Dept. of Physics, University of California, Santa Barbara, CA, 93106
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Intergalactic metals are ubiquitous, but their sources remain unknown. A key constraint on these sources is the spatial distributions of metals. Yet, the clustering of metals is difficult to interpret along single lines-of-sight, because distance and velocity information are mixed in redshift space. To overcome this situation we are carrying out detailed comparisons between the line-of-sight and transverse distributions of metal line absorption systems observed in a large sample of QSO pairs and simulations including a wide range of IGM-enrichment scenarios. The degeneracy between distance and velocity is broken by the transverse information available in pairs of sightlines, and thus these comparisons are providing unique new constraints on when and where metals were ejected from galaxies.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Abel, T., Bryan, G. L., & Norman, M. L. 2002, Science, 295, 93CrossRefGoogle Scholar
Becker, G. D., Rauch, M., & Sargent, W. L. W. 2009, ApJ, 698, 1010CrossRefGoogle Scholar
Bertschinger, E. 2001, ApJS, 137, 1Google Scholar
Bromm, V., Ferrara, A., Coppi, P. S., & Larson, R. B. 2001, MNRAS, 328, 969CrossRefGoogle Scholar
Cowie, L. L., Songaila, A., Kim, T.-S., & Hu, E. M. 1995, AJ, 109, 1522CrossRefGoogle Scholar
Davis, M., Efstathiou, G., Frenk, C. S., & White, S. D. M. 1985, ApJ, 292, 371CrossRefGoogle Scholar
Feguson, H. C., Dickenson, M., & Papovich, C. 2002, ApJ, 569, 65CrossRefGoogle Scholar
Heger, A. & Woosley, S. E. 2002, ApJ, 567, 532Google Scholar
Hennawi, J. F. et al. 2006, AJ, 131, 1CrossRefGoogle Scholar
Hennawi, J. F. et al. 2009, ApJ, submitted (arXiv:09083907)Google Scholar
Kaiser, N. 1984, ApJ, 284, L9Google Scholar
Kriss, G. 1994, A. S. P. Conference Series, 61, 437Google Scholar
Pettini, M. et al. 2001, ApJ, 554, 981Google Scholar
Pichon, C. et al. 2003, ApJL, 597, 97CrossRefGoogle Scholar
Martin, C. L. et al. 2009, in preperationGoogle Scholar
Rauch, M., Haehnelt, M. G., & Steinmetz, M. 1997, ApJ, 481, 601CrossRefGoogle Scholar
Rauch, M., Haehnelt, M. G., & Steinmetz, M. 1997, ApJ, 481, 601CrossRefGoogle Scholar
Scannapieco, E., Ferrara, A., & Madau, P. 2002, ApJ, 574, 590CrossRefGoogle Scholar
Scannapieco, E. 2005, ApJL, 724, 1Google Scholar
Scannapieco, E., et al. 2006, MNRAS, 365, 615CrossRefGoogle Scholar
Schneider, R., Ferrara, A., Natarajan P., & Omukai, K. 2002, ApJ, 571, 30CrossRefGoogle Scholar
Shapley, A. E. et al. 2005, ApJ, 626, 698CrossRefGoogle Scholar
Springel, V. 2005, MNRAS, 364, 1105Google Scholar
Tytler, D., et al. 1995 in QSO Absorption LInes, ed. Meylan, G., 289CrossRefGoogle Scholar