No CrossRef data available.
Article contents
Constraints of habitability for the young Earth in a highly eccentric orbit
Published online by Cambridge University Press: 13 January 2020
Abstract
Thousands of planets outside the Solar system have been discovered, with exoplanets in different environments. Since we cannot expect to find an exoplanetary system fully resembling our Solar System, we consider a Solar System type configuration where the Earth moves in an eccentric orbit. We focus on young Earth 1 billion years ago, when the Sun’s extreme UV (EUV) flux was about 5 times higher than the current radiation. In case of eccentric motion of Earth, strong variations of the EUV flux would influence the evolution of the planet’s atmosphere (EUV radiation of 50 times the current EUV flux would be possible). Taking into account a certain amount of Nitrogen in the atmosphere of such a young Earth, we study the non-thermal loss of N2 over a long time interval. We therefore investigate to what extent eccentric motion will influence the conditions of habitability of a terrestrial planet.
- Type
- Contributed Papers
- Information
- Proceedings of the International Astronomical Union , Volume 14 , Symposium S345: Origins: From the Protosun to the First Steps of Life , August 2018 , pp. 358 - 359
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
- Copyright
- © International Astronomical Union 2020