Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-29T07:50:04.136Z Has data issue: false hasContentIssue false

Core-Collapse Supernovae as Dust Producers

Published online by Cambridge University Press:  01 December 2007

Rubina Kotak*
Affiliation:
Astrophysics Research Centre, Queen's University Belfast, Belfast, BT7 1NN, United Kingdom email: r.kotak@qub.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Although it has long been hypothesised that core-collapse supernovae may produce large quantities of dust, interest in this problem has recently been rekindled given the enormous dust masses inferred at very high redshifts (z ≳ 6), when conventional low-mass dust-producing stars would fail to contribute significantly to the universal dust budget. Emission due to warm dust peaks at mid-IR wavelengths. However, with the notable exception of SN 1987A, supernova studies in the mid-IR have been virtually non-existent until the advent of the Spitzer Space Telescope. On behalf of the Mid-Infrared Supernova Consortium, I briefly discuss recent exciting results from mid-IR studies of core-collapse supernovae using Spitzer and attempt to put the role of supernovae as major dust producers into perspective.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Bertoldi, F., Carilli, C. L., Cox, P., et al. 2003, A&A, 406, L55Google Scholar
Blair, W. P., Ghavamian, P., Long, K. S., et al. 2007 ApJ, 662, 998Google Scholar
Bode, M. & Evans, A. 1979, A&A, 73, 113Google Scholar
Cernuschi, F., Marsicano, F., & Codina, S. 1967, Ann. d'Astrophys, 30, 1039Google Scholar
Danziger, I. J., Gouiffes, C., Bouchet, P., & Lucy, L. B. 1989, IAU Circ, 4746, 1Google Scholar
Dwek, E. 1983, ApJ, 274, 175Google Scholar
Ercolano, B., Barlow, M. J., & Sugerman, B. E. K. 2007, MNRAS, 375, 753Google Scholar
Hoyle, F. & Wickramasinghe, N. C. 1970, Nature, 226, 62Google Scholar
Kotak, R., Meikle, P., van Dyk, S. D., et al. 2005, ApJ, 628, L123CrossRefGoogle Scholar
Kotak, R., Meikle, P., Pozzo, M., et al. 2006, ApJ, 651, L117CrossRefGoogle Scholar
Liu, W. & Dalgarno, A. 1994, ApJ, 428, L769CrossRefGoogle Scholar
Lucy, L. B., Danziger, I. J., Gouiffes, C., & Bouchet, P. 1989, in: Tenorio-Tagle, G., Moles, M. & Melnick, J. (eds.), Structure and Dynamics of the Interstellar Medium (Berlin: Springer-Verlag), Proc. IAU Coll 120, 164Google Scholar
Meikle, W. P. S., Mattila, S., Gerardy, C. L., et al. 2006, ApJ, 649, 332CrossRefGoogle Scholar
Meikle, W. P.S., Mattila, S., Pastorello, A., et al. 2007, ApJ, 665, 608CrossRefGoogle Scholar
Morgan, H. L. & Edmunds, M. G., 2003, MNRAS, 343, 427CrossRefGoogle Scholar
Nozawa, T., Kozasa, T., Umeda, H., et al. 2003, ApJ, 598, 785Google Scholar
Roche, P. F., Aitken, D. K., & Smith, C. H. 1993 MNRAS, 261, 522CrossRefGoogle Scholar
Stanimirović, S., Bolatto, A. D., Sandstrom, K., et al. 2005, ApJ 632, L103CrossRefGoogle Scholar
Sugerman, B. E. K., Ercolano, B., Barlow, M. J., et al. 2006, Science, 313, 196Google Scholar
Tielens, A. G. G. M., 1990, in Carbon in the Galaxy: Studies from Earth and Space, NASA Conf. Publ., 3061, 59Google Scholar
Todini, P. & Ferrara, A. 2001, MNRAS, 325, 726CrossRefGoogle Scholar
Wooden, D. H., Rank, D. M., Bregman, J. D., et al. 1993, ApJS, 88, 477CrossRefGoogle Scholar