Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T22:53:26.540Z Has data issue: false hasContentIssue false

The cosmic distance scale and H0: Past, present, and future

Published online by Cambridge University Press:  26 February 2013

Wendy L. Freedman*
Affiliation:
The Observatories, Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101, USA email: wendy@obs.carnegiescience.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Twenty years ago, there was disagreement at a level of a factor of two as regards the value of the expansion rate of the Universe. Ten years ago, a value that was good to 10% was established using the Hubble Space Telescope (HST), completing one of the primary missions that NASA designed and built the HST to undertake. Today, after confronting most of the systematic uncertainties listed at the end of the Key Project, we are looking at a value of the Hubble constant that is plausibly known to within 3%. In the near future, an independently determined value of H0 good to 1% is desirable to constrain the extraction of other cosmological parameters from the power spectrum of the cosmic microwave background in defining a concordance model of cosmology. We review recent progress and assess the future prospects for those tighter constraints on the Hubble constant, which were unimaginable just a decade ago.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Albrecht, A., Bernstein, G., Cahn, R., et al. 2006, Report of the Dark Energy Task Force, astro-ph/0609591CrossRefGoogle Scholar
Benedict, F., McArthur, B. E., Feast, M. W., et al. 2007, AJ, 133, 1810Google Scholar
Benedict, F., McArthur, B. E., Feast, M. W., et al. 2011, AJ, 142, 187Google Scholar
Benson, B. A., de Haan, T., Dudley, J. P., et al. 2011, ApJ, submitted (arXiv:1112.5435)Google Scholar
Blakeselee, J. P., Cantiello, M., Mei, S., et al. 2010, ApJ, 724, 657CrossRefGoogle Scholar
Ciardullo, R. 2012, Ap&SS, 341, 151Google Scholar
Folatelli, G., Phillips, M. M., Burns, C. R., et al. 2009, AJ, 139, 120Google Scholar
Freedman, W. L., Madore, B. F., Gibson, B. K., et al. 2001, ApJ, 553, 47Google Scholar
Freedman, W. L., Madore, B. F., Scowcroft, V., et al. 2011, AJ, 142, 192CrossRefGoogle Scholar
Freedman, W. L., Madore, B. F., Scowcroft, V., et al. 2012, ApJ, 758, 24Google Scholar
Freedman, W. L. & Madore, B. F. 2010, ARA&A, 48, 673Google Scholar
Jackson, N. 2007, Liv. Rev. Rel., 10, 4CrossRefGoogle Scholar
Hicken, M., Wood-Vasey, W. M., Blondin, S., Challis, P., Jha, S., Kelly, P. L., Rest, A., & Kirshner, R. P. 2009, ApJ, 700, 1097Google Scholar
Keisler, R., Reichardt, C. L., Aird, K. A., et al. 2011, ApJ, 743, 28CrossRefGoogle Scholar
Komatsu, E., Smith, K. M., Dunkley, J., et al. 2011, ApJS, 192, 18Google Scholar
Lo, F. 2005, ARA&A, 43, 625Google Scholar
Macri, L. M., Stanek, K. Z., Bersier, D., Greenhill, L. J., & Reid, M. J. 2006, ApJ, 652, 1133Google Scholar
Mehta, K.T. 2012, MNRAS, submitted (arXiv:1202.0092)Google Scholar
Mignard, F. M. 2004, Bull. Am. Astron. Soc., 36, 858Google Scholar
Monson, A., Freedman, W. L., Madore, B. F., et al. 2012, ApJ, 759, 146Google Scholar
Percival, W. J., Reid, B. A., Eisenstein, D. J., et al. 2010, MNRAS, 401, 2148Google Scholar
Riess, A. G., Macri, L., Casertano, S., et al. 2011, ApJ, 732, 129Google Scholar
Scowcroft, V., Freedman, W. L., Madore, B. F., et al. 2011, ApJ, 743, 76Google Scholar
Treu, T. 2010, ARA&A, 48, 87Google Scholar
Suyu, S. H., Hensel, S. W., McKean, J. P., et al. 2011, ApJ, 750, 10Google Scholar
Suyu, S. H., Treu, T., Blandford, R. D., et al. 2012, arXiv:1202.4459Google Scholar
Weinberg, D. H., Mortonson, M. J., Eisenstein, D. J., et al. 2012, Phys. Rep., in press (arXiv:1201.2434)Google Scholar