Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T11:50:48.321Z Has data issue: false hasContentIssue false

Cosmic evolution of AGN with moderate-to-high radiative luminosity in the COSMOS field

Published online by Cambridge University Press:  08 May 2018

L. Ceraj
Affiliation:
University of Zagreb, Physics Department, Bijenička cesta 32, 10002 Zagreb, Croatia
V. Smolčić
Affiliation:
University of Zagreb, Physics Department, Bijenička cesta 32, 10002 Zagreb, Croatia
I. Delvecchio
Affiliation:
University of Zagreb, Physics Department, Bijenička cesta 32, 10002 Zagreb, Croatia
J. Delhaize
Affiliation:
University of Zagreb, Physics Department, Bijenička cesta 32, 10002 Zagreb, Croatia
M. Novak
Affiliation:
University of Zagreb, Physics Department, Bijenička cesta 32, 10002 Zagreb, Croatia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the moderate-to-high radiative luminosity active galactic nuclei (HLAGN) within the VLA-COSMOS 3 GHz Large Project. The survey covers 2.6 square degrees centered on the COSMOS field with a 1σ sensitivity of 2.3 μJy/beam across the field. This provides the simultaneously largest and deepest radio continuum survey available to date with exquisite multi-wavelength coverage. The survey yields 10,830 radio sources with signal-to-noise ratios ≥5. A subsample of 1,604 HLAGN is analyzed here. These were selected via a combination of X-ray luminosity and mid-infrared colors. We derive luminosity functions for these AGN and constrain their cosmic evolution out to a redshift of z ∼ 6, for the first time decomposing the star formation and AGN contributions to the radio continuum emission in the AGN. We study the evolution of number density and luminosity density finding a peak at z ∼ 1.5 followed by a decrease out to a redshift z ∼ 6.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Best, P. N. & Heckman, T. M. 2012, MNRAS, 421, 1569CrossRefGoogle Scholar
Ching, J. H. Y., Sadler, E. M., Croom, S. M., et al. 2017, MNRAS, 464, 1306Google Scholar
Delhaize, J., Smolčić, V., Delvecchio, I., et al. 2017, A&A, 602, A4Google Scholar
Delvecchio, I., Smolčić, V., Zamorani, G., et al. 2017, A&A, 602, A3Google Scholar
Heckman, T. M. & Best, P. N. 2014, ARA&A, 52, 589Google Scholar
Laigle, C., McCracken, H. J., Ilbert, O., et al. 2016, ApJS, 224, 24Google Scholar
Novak, M., Smolčić, V., Delhaize, J., et al. 2017, A&A, 602, A5Google Scholar
Padovani, P., Bonzini, M., Kellermann, K. I., et al. 2015, MNRAS, 452, 1263Google Scholar
Pracy, M. B., Ching, J. H. Y.., Sadler, E. M., et al. 2016, MNRAS, 460, 2Google Scholar
Schmidt, M. 1968, ApJ, 151, 393CrossRefGoogle Scholar
Smolčić, V. 2009, ApJl, 699, L43Google Scholar
Smolčić, V., Novak, M., Bondi, M., et al. 2017a, A&A, 602, A1Google Scholar
Smolčić, V., Delvecchio, I., Zamorani, G., et al. 2017c, A&A, 602, A2Google Scholar
Smolčić, V., Novak, M., Delvecchio, I., et al. 2017b, A&A, 602, A6Google Scholar
Willott, C. J., Rawlings, S., Blundell, K. M. & Lacy, M. 1999, MNRAS, 309, 1017Google Scholar