Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T16:32:35.518Z Has data issue: false hasContentIssue false

Cosmic Infrared Background ExpeRiment (CIBER): A probe of Extragalactic Background Light from reionization

Published online by Cambridge University Press:  17 August 2012

Asantha Cooray
Affiliation:
Center for Cosmology, University of California, Irvine, USA
Jamie Bock
Affiliation:
Department of Physics, Caltech, PasadenaUSA
Mitsunobu Kawada
Affiliation:
Department of Physics, Nagoya University, Japan
Brian Keating
Affiliation:
Department of Physics, University of California, La Jolla, USA
Andrew Lange
Affiliation:
Department of Physics, Caltech, PasadenaUSA
Dae-Hee Lee
Affiliation:
Korea Astronomy and Space Science Institute, Daejeon, Korea
Louis Levenson
Affiliation:
Department of Physics, Caltech, PasadenaUSA
Toshio Matsumoto
Affiliation:
Institute of Space and Astronautical Sciences, JAXA, Japan email: acooray@uci.edu
Shuji Matsuura
Affiliation:
Institute of Space and Astronautical Sciences, JAXA, Japan email: acooray@uci.edu
Tom Renbarger
Affiliation:
Department of Physics, University of California, La Jolla, USA
Ian Sullivan
Affiliation:
Department of Physics, Caltech, PasadenaUSA
Kohji Tsumura
Affiliation:
Institute of Space and Astronautical Sciences, JAXA, Japan email: acooray@uci.edu
Takehiko Wada
Affiliation:
Institute of Space and Astronautical Sciences, JAXA, Japan email: acooray@uci.edu
Michael Zemcov
Affiliation:
Department of Physics, Caltech, PasadenaUSA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Cosmic Infrared Background ExpeRiment (CIBER) is a rocket-borne absolute photometry imaging and spectroscopy experiment optimized to detect signatures of first-light galaxies present during reionization in the unresolved IR background. CIBER-I consists of a wide-field two-color camera for fluctuation measurements, a low-resolution absolute spectrometer for absolute EBL measurements, and a narrow-band imaging spectrometer to measure and correct scattered emission from the foreground zodiacal cloud. CIBER-I was successfully flown in February 2009 and July 2010 and four more flights are planned by 2014, including an upgrade (CIBER-II). We propose, after several additional flights of CIBER-I, an improved CIBER-II camera consisting of a wide-field 30 cm imager operating in 4 bands between 0.5 and 2.1 microns. It is designed for a high significance detection of unresolved IR background fluctuations at the minimum level necessary for reionization. With a FOV 50 to 2000 times larger than existing IR instruments on satellites, CIBER-II will carry out the definitive study to establish the surface density of sources responsible for reionization.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Aharonian, F., et al. , 2006, Nature, 440, 1018CrossRefGoogle Scholar
Bock, J., et al. 2006, New Astronomy Reviews, 50, 215CrossRefGoogle Scholar
Bouwens, R., et al. 2006, ApJ, 653, 53CrossRefGoogle Scholar
Cambresy, L., et al. 2001, ApJ, 555, 563CrossRefGoogle Scholar
Chary, R.-R. 2008, ApJ, 680, 32CrossRefGoogle Scholar
Chary, R.-R., Cooray, A., & Sullivan, I. 2008, ApJ, 681, 53CrossRefGoogle Scholar
Chary, R.-R. & Cooray, A. 2011, in preparationGoogle Scholar
Cooray, A. & Yoshida, N. 2004, MNRAS, 351, L71.CrossRefGoogle Scholar
Cooray, A. & Sheth, R. 2002, Physics Report 372 1 arXiv:astro-ph/0206508CrossRefGoogle Scholar
Cooray, A. 2006, MNRAS, 365, 842CrossRefGoogle Scholar
Cooray, A., Bock, J., Keating, B., Lange, A., & Matsumoto, T. 2004, ApJ, 606, 611CrossRefGoogle Scholar
Cooray, A., et al. 2007, ApJ, 659, L91.CrossRefGoogle Scholar
Cooray, A., et al. 2009, arXiv.org:0902.2372CrossRefGoogle Scholar
Dwek, E., Arendt, R., & Krennrich, F. 2005, ApJ, 635, 784CrossRefGoogle Scholar
Fernandez, E. & Komatsu, E. 2006, ApJ, 646, 703CrossRefGoogle Scholar
Kashlinsky, A., et al. 2004, ApJ, 608, 1CrossRefGoogle Scholar
Kashlinsky, A., et al. 2005, Nature, 438, 45CrossRefGoogle Scholar
Kashlinksy, A., et al. 2007, ApJ, 654, L5.CrossRefGoogle Scholar
Levenson, L. & Wright, E., 2008, ApJ, 683, 585CrossRefGoogle Scholar
Madau, P. & Silk, K. 2005, MNRAS, 359, L37.CrossRefGoogle Scholar
Madau, P. & Pozzetti, L. 2000, MNRAS, 312, L9.CrossRefGoogle Scholar
Matsumoto, T., et al. 2005, ApJ, 626, 31CrossRefGoogle Scholar
Primack, J., Gilmore, R. & Somerville, R. arXiv.org:0811.3230Google Scholar
Santos, M. R., Bromm, V., & Kamionkowski, M. 2002, MNRAS, 336, 1082CrossRefGoogle Scholar
Schroedter, M. 2005, ApJ, 628, 617CrossRefGoogle Scholar
Sullivan, I., et al. 2007, ApJ, 657, 37CrossRefGoogle Scholar
Thompson, R. et al. 2008, arXiv:0706.0547Google Scholar
Trac, H. & Cen, R. 2007, ApJ, 671, 1CrossRefGoogle Scholar
Tsumura, K., et al. 2010, ApJ, 719, 394CrossRefGoogle Scholar