Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T14:26:02.738Z Has data issue: false hasContentIssue false

Cosmic-Ray induced diffuse emissions from the Milky Way and Local Group galaxies

Published online by Cambridge University Press:  17 August 2012

Troy A. Porter*
Affiliation:
Hansen Experimental Physics Laboratory and Kavli Institute for Particle Astrophysics and Cosmology Stanford University, Stanford, USA email: tporter@stanford.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Cosmic rays fill up the entire volume of galaxies, providing an important source of heating and ionisation of the interstellar medium, and may play a significant role in the regulation of star formation and galactic evolution. Diffuse emissions from radio to high-energy γ-rays (>100 MeV) arising from various interactions between cosmic rays and the interstellar medium, interstellar radiation field, and magnetic field, are currently the best way to trace the intensities and spectra of cosmic rays in the Milky Way and other galaxies. In this contribution, I describe our recent work to model the full spectral energy distribution of galaxies like the Milky Way from radio to γ-ray energies. The application to other galaxies, in particular the Magellanic Clouds and M31 that are now resolved in high-energy γ-rays by the Fermi-LAT, is also discussed.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Abdo, A. A., Ackermann, M., Ajello, M., et al. 2009, ApJ, 703, 1249CrossRefGoogle Scholar
Abdo, A. A., Ackermann, M., Ajello, M., et al. 2010, A&A, 512, 7Google Scholar
Abdo, A. A., Ackermann, M., Ajello, M., et al. 2010, A&A, 523, L2.Google Scholar
Abdo, A. A., Ackermann, M., Ajello, M., et al. 2010, A&A, 523, 46Google Scholar
Helou, G., Soifer, B. T., & Rowan-Robinson, M. 1985, ApJL, 298, L7.CrossRefGoogle Scholar
Kim, S., Staveley-Smith, L., Dopita, M. A., et al. 2005, ApJS, 143, 487Google Scholar
Moskalenko, I. V., Strong, A. W., Ormes, J. F., et al. 2002, ApJ, 565, 280CrossRefGoogle Scholar
Murphy, E. J., Helou, G., Braun, R., et al. 2006, ApJ, 638, 157CrossRefGoogle Scholar
Murphy, E. J., Helou, G., Kenney, J. D. P., et al. 2008, ApJ, 678, 828CrossRefGoogle Scholar
Porter, T. A., Moskalenko, I. V., Strong, A. W., et al. 2008, ApJ, 682, 400CrossRefGoogle Scholar
Strong, A. W., Moskalenko, I. V., & Reimer, O. 2000, ApJ, 537, 763CrossRefGoogle Scholar
Strong, A. W., Moskalenko, I. V., & Ptuskin, V. S. 2007, Ann. Rev. Nuc. Part. Sci., 57, 285CrossRefGoogle Scholar
Strong, A. W., Porter, T. A., Digel, S. W., et al. 2010, ApJL, 722, 58CrossRefGoogle Scholar
Thompson, T. A., Quataert, E., & Waxman, E. 2007, ApJ, 654, 219CrossRefGoogle Scholar
Völk, H. J. 1989, A&A, 218, 67Google Scholar