Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T17:34:03.709Z Has data issue: false hasContentIssue false

Cosmological Applications of the Gaussian Kinematic Formula

Published online by Cambridge University Press:  01 July 2015

Yabebal T. Fantaye
Affiliation:
Dipartimento di Matematica, Universit di Roma”Tor Vergata, Via della Ricerca Scientifica 1, I-00133 Roma, Italy email: fantaye@mat.uniroma2.it, marinucc@axp.mat.uniroma2.it
Domenico Marinucci
Affiliation:
Dipartimento di Matematica, Universit di Roma”Tor Vergata, Via della Ricerca Scientifica 1, I-00133 Roma, Italy email: fantaye@mat.uniroma2.it, marinucc@axp.mat.uniroma2.it
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Gaussian Kinematic Formula (GKF, see Adler and Taylor (2007,2011)) is an extremely powerful tool allowing for explicit analytic predictions of expected values of Minkowski functionals under realistic experimental conditions for cosmological data collections. In this paper, we implement Minkowski functionals on multipoles and needlet components of CMB fields, thus allowing a better control of cosmic variance and extraction of information on both harmonic and real domains; we then exploit the GKF to provide their expected values on spherical maps, in the presence of arbitrary sky masks, and under nonGaussian circumstances.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Planck Collaboration ArXiv e-prints: 1303.5083Google Scholar
Fantaye, Yabebal, Hansen, Frode, Maino, Davide, Marinucci, DomenicoArXiv e-prints: 1406.5420Google Scholar
Adler, R. J., John Wiley & Sons Inc, ISBN: 0471278440 The Geometry of Random Fields 1981Google Scholar
Taylor, J. E. & Adler, R. J., The Annals of Probability 31, 533, 2003CrossRefGoogle Scholar
Adler, , Ewing, , & Taylor, , Statistical Science 24, 1, 1009Google Scholar
Adler, & Taylor, , Springer Berlin Heidelberg, ISBN: 978-3-642-19579-2 Topological Complexity of Smooth Random Functions 2007Google Scholar
Adler, & Taylor, Springer New York, ISBN: 9780387481128 Random Fields and Geometry 2007Google Scholar
Tomita, H., Progress of Theoretical Physics 76, 952, 1986Google Scholar
Eriksen, , Hansen, , Banday, , Gorski, , and Lilje, , ApJ 605, 14, 2004Google Scholar