Article contents
A critical assessment of models for the origin of multiple populations in globular clusters
Published online by Cambridge University Press: 31 March 2017
Abstract
A number of scenarios have been put forward to explain the origin of the chemical anomalies (and resulting complex colour-magnitude diagrams) observed in globular clusters (GCs), namely the AGB, Fast Rotating Massive Star, Very Massive Star, and Early Disc Accretion scenarios. We compare the predictions of these scenarios with a range of observations (including young massive clusters (YMCs), chemical patterns, and GC population properties) and find that all models are inconsistent with observations. In particular, YMCs do not show evidence for multiple epochs of star-formation and appear to be gas free by an age of ~ 3 Myr. Also, the chemical patterns displayed in GCs vary from one to the next in such a way that cannot be reproduced by standard nucleosynthetic yields. Finally, we show that the “mass budget problem” for the scenarios cannot be solved by invoking heavy cluster mass loss (i.e. that clusters were 10-100 times more massive at birth) as this solution makes basic predictions about the GC population that are inconsistent with observations. We conclude that none of the proposed scenarios can explain the multiple population phenomenon, hence alternative theories are needed.
- Type
- Contributed Papers
- Information
- Proceedings of the International Astronomical Union , Volume 12 , Symposium S316: Formation, evolution, and survival of massive star clusters , August 2015 , pp. 302 - 309
- Copyright
- Copyright © International Astronomical Union 2017
References
- 1
- Cited by