Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T21:29:52.623Z Has data issue: false hasContentIssue false

A decade of transitional millisecond pulsars

Published online by Cambridge University Press:  04 June 2018

Amruta Jaodand
Affiliation:
ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA Dwingeloo, the Netherlands Astronomical Institute Anton Pannekoek, University of Amsterdam, 1098XH, Amsterdam, the Netherlands
Jason W. T. Hessels
Affiliation:
ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA Dwingeloo, the Netherlands Astronomical Institute Anton Pannekoek, University of Amsterdam, 1098XH, Amsterdam, the Netherlands
Anne Archibald
Affiliation:
Astronomical Institute Anton Pannekoek, University of Amsterdam, 1098XH, Amsterdam, the Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Transitional millisecond pulsars (tMSPs), which are systems that harbor a pulsar in the throes of the recycling process, have emerged as a new source class since the discovery of the first such system a decade ago. These systems switch between accretion-powered low-mass X-ray binary (LMXB) and rotation-powered radio millisecond pulsar (RMSP) states, and provide exciting avenues to understand the physical processes that spin-up neutron stars to millisecond periods. During the last decade, three tMSPs, as well as a candidate source, have been extensively probed using systematic, multi-wavelength campaigns. Here we review the observational highlights from these campaigns and our general understanding of tMSPs.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Alpar, M. A., Cheng, A. F., Ruderman, M. A., & Shaham, J., 1982, Nature, 300, 728Google Scholar
Ambrosino, F., Papitto, A., Stella, L., et al. 2017, Nature Astron., 1, 266Google Scholar
Applegate, J. H., 1992, ApJL, 385, 621Google Scholar
Applegate, J. H., & Shaham, J., 1994, ApJL, 436, 312Google Scholar
Archibald, A. M., Kaspi, V. M., Bogdanov, S., et al. 2010, ApJ, 722, 88Google Scholar
Archibald, A. M., Kaspi, V. M., Hessels, J. W. T., et al. 2013, ArXiv e-prints, arXiv:1311.5161Google Scholar
Archibald, A. M., Stairs, I. H., Ransom, S. M., et al. 2009, Science, 324, 1411Google Scholar
Archibald, A. M., Bogdanov, S., Patruno, A., et al. 2015, ApJ, 807, 62CrossRefGoogle Scholar
Baglio, M. C., D’Avanzo, P., Campana, S., et al. 2016, A&A, 591, A101Google Scholar
Bassa, C. G., Patruno, A., Hessels, J. W. T., et al. 2014, MNRAS, 441, 1825Google Scholar
Bégin, S. 2006, doi:10.14288/1.0085181CrossRefGoogle Scholar
Bogdanov, S., Archibald, A. M., Hessels, J. W. T., et al. 2011, ApJ, 742, 97Google Scholar
Bogdanov, S., Patruno, A., Archibald, A. M., et al. 2014, ApJ, 789, 40Google Scholar
Bogdanov, S., Archibald, A. M., Bassa, C., et al. 2015, ApJ, 806, 148Google Scholar
Bogdanov, S., Deller, A. T., Miller-Jones, J. C. A., et al. 2017, ArXiv e-prints, arXiv:1709.08574Google Scholar
Bond, H. E., White, R. L., Becker, R. H., & O’Brien, M. S., 2002, PASP, 114, 1359CrossRefGoogle Scholar
Breton, R. P., van Kerkwijk, M. H., Roberts, M. S. E., et al. 2013, ApJ, 769, 108Google Scholar
de Martino, D., Belloni, T., Falanga, M., et al. 2013, A&A, 550, A89Google Scholar
Deller, A. T., Moldon, J., Miller-Jones, J. C. A., et al. 2015, ApJ, 809, 13Google Scholar
Hill, A. B., Szostek, A., Corbel, S., et al. 2011, MNRAS, 415, 235Google Scholar
Jaodand, A., Archibald, A. M., Hessels, J. W. T., et al. 2016, ApJ, 830, 122Google Scholar
Johnson, T. J., Ray, P. S., Roy, J., et al. 2015, ApJ, 806, 91Google Scholar
Justham, S., Rappaport, S., & Podsiadlowski, P., 2006, MNRAS, 366, 1415Google Scholar
Linares, M. 2013, The Astronomer’s Telegram, 4960Google Scholar
Papitto, A., Ferrigno, C., Bozzo, E., et al. 2013, Nature, 501, 517Google Scholar
Parfrey, K. & Tchekhovskoy, A. 2017, ArXiv e-prints, arXiv:1708.06362Google Scholar
Patruno, A., Archibald, A. M., Hessels, J. W. T., et al. 2014, ApJL, 781, L3Google Scholar
Radhakrishnan, V., & Srinivasan, G., 1982, Current Science, 51, 1096Google Scholar
Roberts, M. S. E. 2013, in IAU Symposium, Vol. 291, IAU Symposium, ed. J. van Leeuwen, 127–132Google Scholar
Roy, J., Ray, P. S., Bhattacharyya, B., et al. 2015, ApJL, 800, L12Google Scholar
Shahbaz, T., Linares, M., Nevado, S. P., et al. 2015, MNRAS, 453, 3461CrossRefGoogle Scholar
Stappers, B. W., Archibald, A., Bassa, C., et al. 2013, The Astronomer’s Telegram, 5513, 1Google Scholar
Stappers, B. W., Archibald, A. M., Hessels, J. W. T., et al. 2014, ApJ, 790, 39Google Scholar
Szkody, P., Henden, A., Fraser, O., et al. 2004, AJ, 128, 1882Google Scholar
Takata, J., Li, K. L., Leung, G. C. K., et al. 2014, ApJ, 785, 131Google Scholar
Tendulkar, S. P., Yang, C., An, H., et al. 2014, ApJ, 791, 77Google Scholar
Thorstensen, J. R., & Armstrong, E., 2005, AJ, 130, 759Google Scholar