Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-13T01:08:19.178Z Has data issue: false hasContentIssue false

Determination of Prominence Plasma β from the Dynamics of Rising Plumes

Published online by Cambridge University Press:  06 January 2014

Andrew Hillier
Affiliation:
Kwasan Observatory, 17-1 Kitakazan-ohmine-cho, Yamashina-ku, Kyoto, 607-8471, Japan email: andrew@kwasan.kyoto-u.ac.jp
Richard Hillier
Affiliation:
Department of Aeronautics, Imperial College, London, United Kingdom
Durgesh Tripathi
Affiliation:
Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411 007, India
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Observations of quiescent prominences show rising plumes, dark in chromospheric lines, that propagate from large bubbles. In this paper we present a method that may be used to determine the plasma β (ratio of gas pressure to magnetic pressure) from the rising plumes. Using the classic fluid dynamic solution for flow around a circular cylinder, the compression of the prominence material can be estimated. Application to a prominence gave an estimate of the plasma β as β=0.47−1.13 for a ratio of specific heats of γ=1.4−1.7.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Arregui, I., Oliver, R., & Ballester, J. L. 2012, Living Reviews in Solar Physics, 9, 2CrossRefGoogle Scholar
Aulanier, G. & Démoulin, P. 2003, A & A, 402, 769Google Scholar
Ballester, J. L. 2013, The IAU Symposium 300 Proceedings 2013, in pressGoogle Scholar
Berger, T. E., et al. 2008, ApJ Letters, 676, L89Google Scholar
Berger, T. E., et al. 2010, ApJ, 716, 1288CrossRefGoogle Scholar
Berger, T., et al. 2011, Nature, 472, 197Google Scholar
Casini, R., López Ariste, A., Paletou, F., & Léger, L. 2009, ApJ, 703, 114Google Scholar
Chae, J. 2010, ApJ, 714, 618Google Scholar
de Toma, G., Casini, R., Burkepile, J. T., & Low, B. C. 2008, ApJ Letters, 687, L123CrossRefGoogle Scholar
Hillier, A., Isobe, H., Shibata, K., & Berger, T. 2011b, ApJ Letters, 736, L1Google Scholar
Hillier, A., Berger, T., Isobe, H., & Shibata, K. 2012a, ApJ, 746, 120Google Scholar
Hillier, A., Hillier, R., & Tripathi, D. 2012b, ApJ, 761, 106Google Scholar
Isobe, H., Miyagoshi, T., Shibata, K., & Yokoyama, T. 2005, Nature, 434, 478Google Scholar
Isobe, H., Miyagoshi, T., Shibata, K., & Yokoyama, T. 2006b, PASJ, 58, 423Google Scholar
Kosugi, T., et al. 2007, Sol. Phys., 243, 3Google Scholar
Leroy, J. L. 1989, Dynamics and Structure of Quiescent Solar Prominences, 150, 77Google Scholar
López Ariste, A. 2013, The IAU Symposium 300 Proceedings 2013, in pressGoogle Scholar
Schmieder, B., Kucera, T. A., Knizhnik, K., et al. 2013, arXiv:1309.1568Google Scholar
Stone, J. M. & Gardiner, T. 2007, ApJ, 671, 1726CrossRefGoogle Scholar
Tsuneta, S., et al. 2008, Sol. Phys., 249, 167Google Scholar
van Ballegooijen, A. 2013, The IAU Symposium 300 Proceedings 2013, in pressGoogle Scholar
van Dyke, M. 1975, NASA STI/Recon Technical Report A, 75, 46926Google Scholar