Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T17:32:06.679Z Has data issue: false hasContentIssue false

Development of the PFO–CFO hypothesis of solar system formation: Why do the celestial objects have different isotopic ratios for some chemical elements?

Published online by Cambridge University Press:  08 June 2011

E. A. Kadyshevich
Affiliation:
Obukhov Institute of Atmospheric PhysicsRAS, Pyzhevskii str. 3, Moscow, 119017Russia email: kadyshevich@mail.ru
V. E. Ostrovskii
Affiliation:
Karpov Institute of Physical Chemistry, Vorontsovo Pole str. 10, Moscow, 105064Russia email: vostrov@cc.nifhi.ac.ru
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Solar System formation PFO–CFO hypothesis is developed in the direction of creation of a phenomenological model focused on solution of a number of paradoxes and answering to a number of mysterious questions under the same cover. For explanation of the events and processes that occurred over the period from the middle ages of the pre-solar star to the Solar System formation, original approaches are applied.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Audi, G., Bersillon, O., Blachot, G., & Wapstra, A. H. 2003, Nuclear Physics A, 729, 3Google Scholar
Basu, S., Chaplin, W. J., Elsworth, Y., New, R., & Serenelli, A. M. 2009, ApJ, 699, 1403Google Scholar
Bisnovatyi-Kogan, G. S. 2001, Stellar Physics (Springer)Google Scholar
Bohr, N. & Wheeler, J. 1939, Phys. Rev., 56, 426Google Scholar
Bonanno, A., Schlattl, H., & Paterno, L. 2008, A&A, 390, 1115Google Scholar
Burbidge, E. M., Burbidge, G. R., Fowler, W. A., & Hoyle, F. 1957, Rev. Modern. Phys., 29, 547Google Scholar
Caroll, B. W. & Ostlie, D. A. 2006, An Introduction to Modern Astrophysics, 2nd. ed. (Addison-Wesley Publ. Co.)Google Scholar
Clayton, R. N. 1993, Annu. Rev. Earth Planet. Sci., 21, 115CrossRefGoogle Scholar
Erdelyi, R. & Ballai, I. 2007, Astron. Nachr., 328, 726CrossRefGoogle Scholar
Garcia, R. A., Turck-Chieze, S., Jimenez-Reyes, S. J., Ballot, J., Palle, P. L., Eff-Darwich, A., Mathur, S., & Provost, J. 2007, Science, 316, 1591Google Scholar
Greiner, W. & Zagrebaev, V. 2006, J. Nucl. Radiochem. Sci., 7, R1Google Scholar
Guerrero, G. & de Gouveia Dal Pino, E. 2008, A&A, 485, 267Google Scholar
Kadyshevich, E. A. & Ostrovskii, V. E. 2010a, EPSC Abstracts, 5, EPSC20103Google Scholar
Kadyshevich, E. A. & Ostrovskii, V. E. 2010b, 274 IAU Symp. Abstracts Booklet, 65Google Scholar
Kadyshevich, E. A. 2009a, Meteorit. Planet. Sci., 44, A105Google Scholar
Kadyshevich, E. A. 2009b, EPSC Abstracts, 4, EPSC20091Google Scholar
Myers, W. D. & Swiatecki, W. J. 1966, Nucl. Phys., 81, 1Google Scholar
Ostrovskii, V. E. & Kadyshevich, E. A. 2009a, Orig. Life Evol. Biosph., 39, 217Google Scholar
Ostrovskii, V. E. & Kadyshevich, E. A. 2009b, Geochim. Cosmochim. Acta, 73, A979Google Scholar
Ostrovskii, V. E. & Kadyshevich, E. A. 2008, in Dmitrievskii, A. N. & Valyaev, B. M. (eds.) Degassing of the Earth (Moscow: GEOS), p. 374Google Scholar
Ostrovskii, V. E. & Kadyshevich, E. A. 2007, Physics-Uspekhi, 50, 175CrossRefGoogle Scholar
Saha, M. N. 1921, Pros. Roy. Soc. London, Ser.A., 99, 135Google Scholar
Tuli, J. K. 2005, Nucl. Wallet Cards (N. Y.: Nucl. Data Center, Brookhaven Nat. Lab., Upton)Google Scholar