Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T04:18:15.146Z Has data issue: false hasContentIssue false

Differential rotation of stars from spot transit mapping: dependence on rotation period and effective temperature

Published online by Cambridge University Press:  23 December 2024

Alexandre Araújo
Affiliation:
Centre for Radio Astronomy and Astrophysics, Mackenzie Presbyterian University, São Paulo, Brazil
Adriana Valio*
Affiliation:
Centre for Radio Astronomy and Astrophysics, Mackenzie Presbyterian University, São Paulo, Brazil
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Just like the Sun, other stars also exhibit differential rotation. Currently, the rotation profile of a star that hosts a transiting planet can be estimated if during a transits, the planet occults a spot on the photosphere of the star, causing slight variations in its light curve. By detecting the same spot during a later transit, the stellar rotation period at that latitude is determined. Here, we present the results of differential rotation for 48 stars, 13 from the spot transit mapping method, while the remaining 35 stars from other techniques. The results show that the differential rotation is correlated with the stellar mean rotation period for fast rotating stars and strongly anti-correlated for slow rotators. The transition occuring at rotation period of 5 days. On the other hand, the differential shear increases with effective temperature for fast rotating stars, but the correlation is lost for the slow rotators.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Araújo, A., Valio, A., & Alexandre, T. 2023, Kepler-1651a: Superflares and starspot. in prep.,.Google Scholar
Araújo, A. & Valio, A. 2021, Kepler-411 differential rotation from three transiting planets. The Astrophysical Journal Letters, 907(1), L5.CrossRefGoogle Scholar
Araújo, A. & Valio, A. 2023, The connection between starspots and superflares: a case study of two stars. Monthly Notices of the Royal Astronomical Society: Letters, 522(1), L16L20.CrossRefGoogle Scholar
Araújo, A. & Valio, A. 2023, Dependence of Stellar Differential Rotation on Effective Temperature and Rotation: An Analysis from Starspot Transit Mapping. Astrophysical Journal, 956(2), 141.CrossRefGoogle Scholar
Balona, L. A. & Abedigamba, O. P. 2016, Differential rotation in k, g, f and a stars. Monthly Notices of the Royal Astronomical Society, 461(1), 497506.CrossRefGoogle Scholar
Barnes, J., Cameron, A. C., Donati, J.-F., James, D., Marsden, S., & Petit, P. 2005, The dependence of differential rotation on temperature and rotation. Monthly Notices of the Royal Astronomical Society: Letters, 357(1), L1L5.CrossRefGoogle Scholar
Barnes, J., Cameron, A. C., James, D., & Donati, J.-F. 2000, Doppler images from dual-site observations of southern rapidly rotating stars-i. differential rotation on pz tel. Monthly Notices of the Royal Astronomical Society, 314(1), 162174.CrossRefGoogle Scholar
Barnes, J., James, D., & Cameron, A. C. 2004, Differential rotation and star-spot evolution on hk aqr in 2001 and 2002. Monthly Notices of the Royal Astronomical Society, 352(2), 589599.CrossRefGoogle Scholar
Cameron, A. C. & Donati, J.-F. 2002, Doin’the twist: secular changes in the surface differential rotation on ab doradus. Monthly Notices of the Royal Astronomical Society, 329(1), L23L27.CrossRefGoogle Scholar
Croll, B., Walker, G. A., Kuschnig, R., Matthews, J. M., Rowe, J. F., Walker, A., Rucinski, S. M., Hatzes, A. P., Cochran, W. D., Robb, R. M., et al. 2006, Differential rotation of ε eridani detected by most. The Astrophysical Journal, 648(1), 607.CrossRefGoogle Scholar
Donati, J.-F., Collier Cameron, A., & Petit, P. 2003, Temporal fluctuations in the differential rotation of cool active stars. Monthly Notices of the Royal Astronomical Society, 345(4), 11871199.CrossRefGoogle Scholar
Dunstone, N., Hussain, G., Cameron, A. C., Marsden, S., Jardine, M., Barnes, J., Ramirez Velez, J., & Donati, J.-F. 2008, Differential rotation on both components of the pre-main-sequence binary system hd 155555. Monthly Notices of the Royal Astronomical Society, 387(4), 15251536.CrossRefGoogle Scholar
Frasca, A., Fröhlich, H.-E., Bonanno, A., Catanzaro, G., Biazzo, K., & Molenda-Żakowicz, J. 2011, Magnetic activity and differential rotation in the very young star kic 8429280. Astronomy & Astrophysics, 532, A81.CrossRefGoogle Scholar
Fröhlich, H.-E., Frasca, A., Catanzaro, G., Bonanno, A., Corsaro, E., Molenda-Żakowicz, J., Klutsch, A., & Montes, D. 2012, Magnetic activity and differential rotation in the young sun-like stars kic 7985370 and kic 7765135. Astronomy & Astrophysics, 543, A146.CrossRefGoogle Scholar
Järvinen, S., Arlt, R., Hackman, T., Marsden, S., Küker, M., Ilyin, I., Berdyugina, S., Strassmeier, K., & Waite, I. 2015, Doppler images and the underlying dynamo-the case of af leporis. Astronomy & Astrophysics, 574, A25.CrossRefGoogle Scholar
Karmakar, S., Pandey, J., Savanov, I., Taş, G., Pandey, S., Misra, K., Joshi, S., Dmitrienko, E., Sakamoto, T., Gehrels, N., et al. 2016, Lo peg: surface differential rotation, flares, and spot-topographic evolution. Monthly Notices of the Royal Astronomical Society, 459(3), 31123129.CrossRefGoogle Scholar
Küker, M. & Rüdiger, G. 2011, Differential rotation and meridional flow on the lower zero-age main sequence: Reynolds stress versus barocinic flow. Astronomische Nachrichten, 332(9-10), 933938.CrossRefGoogle Scholar
Marsden, S., Donati, J., Semel, M., Petit, P., & Carter, B. 2006, Surface differential rotation and photospheric magnetic field of the young solar-type star hd 171488 (v889 her). Monthly Notices of the Royal Astronomical Society, 370(1), 468476.CrossRefGoogle Scholar
Marsden, S., Jardine, M., Ramrez Vélez, J., Alecian, E., Brown, C., Carter, B., Donati, J.-F., Dunstone, N., Hart, R., Semel, M., et al. 2011, Magnetic fields and differential rotation on the pre-main sequence–ii. the early-g star hd 141943–coronal magnetic field, hα emission and differential rotation. Monthly Notices of the Royal Astronomical Society, 413(3), 19391948.CrossRefGoogle Scholar
Marsden, S., Waite, I., Carter, B., & Donati, J.-F. 2004, Doppler imaging of g-dwarfs in two young open clusters. Astronomische Nachrichten, 325(3), 246.CrossRefGoogle Scholar
Mengel, M. W. 2005,. The active young solar-type star HR 1817 (= HD 35850). PhD thesis, University of Southern Queensland.Google Scholar
Mosser, B., Baudin, F., Lanza, A. F., Hulot, J., Catala, C., Baglin, A., & Auvergne, M. 2009, Short-lived spots in solar-like stars as observed by corot. Astronomy & Astrophysics, 506(1), 245254.CrossRefGoogle Scholar
Parker, E. N. 1955, Hydromagnetic Dynamo Models. Astrophysical Journal, 122, 293.CrossRefGoogle Scholar
Petit, P., Jardine, M., & Spruit, H. C. Magnetic fields throughout stellar evolution. In Proc. IAU Symp 2013, volume 302, 142.Google Scholar
Reinhold, T., Reiners, A., & Basri, G. 2013, Rotation and differential rotation of active kepler stars. Astronomy and Astrophysics, 560, A4.CrossRefGoogle Scholar
Silva, A. V. 2003, Method for spot detection on solar-like stars. The Astrophysical Journal Letters, 585(2), L147.CrossRefGoogle Scholar
Silva–Valio, A. 2008, Estimating Stellar Rotation from Starspot Detection during Planetary Transits. Astrophysical Journal, Letters, 683(2), L179.CrossRefGoogle Scholar
Silva–Valio, A., Lanza, A., Alonso, R., & Barge, P. 2010, Properties of starspots on corot-2. Astronomy & Astrophysics, 510, A25.CrossRefGoogle Scholar
Valio, A. Stellar Activity from Analysis of Planetary Transits. In Chavez, M., Bertone, E., Vega, O., & De la Luz, V., editors, New Quests in Stellar Astrophysics III: A Panchromatic View of Solar-Like Stars, With and Without Planets 2013, volume 472 of Astronomical Society of the Pacific Conference Series, 239.Google Scholar
Valio, A. 2016, Starspots properties and stellar activity from planetary transits. Proceedings of the International Astronomical Union, 12(S328), 6976.Google Scholar
Valio, A. & Araújo, A. 2022, Stellar Obliquity from Spot Transit Mapping of Kepler-210. Astrophysical Journal, 940(2), 132.CrossRefGoogle Scholar
Valio, A., Estrela, R., Netto, Y., Bravo, J., & de Medeiros, J. 2017, Activity and rotation of kepler-17. Astrophysical Journal, 835(2), 294.CrossRefGoogle Scholar
Vida, K., Oláh, K., & Szabó, R. 2014, Looking for activity cycles in late-type kepler stars using time–frequency analysis. Monthly Notices of the Royal Astronomical Society, 441(3), 27442753.CrossRefGoogle Scholar
Walker, G. A., Croll, B., Kuschnig, R., Walker, A., Rucinski, S. M., Matthews, J. M., Guenther, D. B., Moffat, A. F., Sasselov, D., & Weiss, W. W. 2007, The differential rotation of κ 1 ceti as observed by most. The Astrophysical Journal, 659(2), 1611.CrossRefGoogle Scholar
Zaleski, S., Valio, A., Carter, B., & Marsden, S. 2022, Dynamo activity of the k dwarf koi-883 from transit photometry mapping. Monthly Notices of the Royal Astronomical Society, 510(4), 53485361.CrossRefGoogle Scholar
Zaleski, S., Valio, A., Marsden, S., & Carter, B. 2019, Differential rotation of kepler-71 via transit photometry mapping of faculae and starspots. Monthly Notices of the Royal Astronomical Society, 484(1), 618630.CrossRefGoogle Scholar