Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T23:15:50.014Z Has data issue: false hasContentIssue false

Discovery of superflares

Published online by Cambridge University Press:  09 September 2016

Daisaku Nogami*
Affiliation:
Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, Japan, 606-8502 email: nogami@kusastro.kyoto-u.ac.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have discovered 1547 ‘superflares’ on about 279 G-type main-sequence stars by using the Kepler-spacecraft data of Q0-Q6. ‘Superflares’ mean flares that radiate total energy 10 times or more larger than that of the largest flare in the Sun ever recorded. We here briefly review our current understandings on superflares and superflare stars obtained by analyzing the Kepler data and follow-up high dispersion spectra.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Allen, J., et al. 1989, Eos Transactions American Geophysical Union Journal, 70, 1479 CrossRefGoogle Scholar
Aschwanden, M. J., Tarbell, T. D., & Nightingale, R. W., et al. 2000, ApJ, 535, 1047 Google Scholar
Borucki, W. J., et al. 2010, Science, 327, 977 Google Scholar
Carrington, R. C. 1859, MNRAS, 20, 13 Google Scholar
Duncan, D. K. 1881, ApJ, 248, 651 Google Scholar
Crossby, N. B., Aschwanden, M. J., & Dennis, B. R. 1993, Solar Phys., 143, 275 CrossRefGoogle Scholar
Frasca, A., et al. 2010, A&A, 532, A81 Google Scholar
Gershberg, R. E. 2005, Solar-Type Activity in Main Sequence Stars (Berlin Heidelberg: Springer)Google Scholar
Honda, S., et al. 2015, PASJ, 67, 5 CrossRefGoogle Scholar
Koch, D. G., et al. 2010, ApJ, 713, L79 Google Scholar
Kopp, G., Lawrence, G., & Rottman, G. 2005, Sol. Phys., 230, 129 CrossRefGoogle Scholar
Landini, M., Monsignori Fossi, B. C., Pallanicini, R., & Piro, L. 1986, A&A, 157, 217 Google Scholar
Loomis, E. 1861, American Journal of Science and Arts, Second Series, 32, 318 Google Scholar
Maehara, H., et al. 2012, Nature, 485, 478 Google Scholar
Maehara, H., et al. 2015, Earth, Planet and Space, 67, 59 CrossRefGoogle Scholar
Maehara, H., et al. 2016, this volumeGoogle Scholar
Nogami, D., et al. 2014, PASJ, 66, L4 Google Scholar
Notsu, S., et al. 2013a, PASJ, 65, 112 Google Scholar
Notsu, Y., et al. 2013b, ApJ, 771, 127 Google Scholar
Notsu, Y., et al. 2015a, PASJ, 67, 32 CrossRefGoogle Scholar
Notsu, Y., et al. 2015b, PASJ, 67, 33 Google Scholar
Notsu, Y., et al. 2016, this volumeGoogle Scholar
Randich, S. 2000, ASP Conf. Ser., 198, 401 Google Scholar
Schaefer, B. E. 1989, ApJ, 337, 927 Google Scholar
Schaefer, B. E., King, J. R. & Deliyannis, C. P. 2000, ApJ, 529, 1026 CrossRefGoogle Scholar
Shimizu, T. 1995, PASJ, 47, 251 Google Scholar
Shibata, K. 2016, this volumeGoogle Scholar
Shibata, K., et al. 2013, PASJ, 65, 49 CrossRefGoogle Scholar
Shibata, K. & Magara, T. 2011, Living Review in Solar Physics, 8, 6 CrossRefGoogle Scholar
Shibata, K. & Yokoyama, T. 2001, ApJ, 526, L49 Google Scholar
Shibayama, T., et al. 2013, ApJS, 209, 5 Google Scholar
Takeda, Y., Honda, S., Kawanomoto, S., Ando, H., & Sakurai, T. 2010, A&A, 515, A93 Google Scholar
Tatischeff, V. & Thibaud, J.-P. 2007, A&A, 469, 265 Google Scholar
Tsurutani, B. T., Gonzalez, W. D., Lakhina, G. S., & Alex, S. 2003, JGR, 108, 1268 CrossRefGoogle Scholar