Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T21:20:57.683Z Has data issue: false hasContentIssue false

Distance determination from the Cepheid and RR Lyrae period-luminosity relations

Published online by Cambridge University Press:  18 February 2014

Chow-Choong Ngeow
Affiliation:
Graduate Institute of Astronomy, National Central University, Jhongli 32001, Taiwan email: cngeow@astro.ncu.edu.tw
Wolfgang Gieren
Affiliation:
Departamento de Astronomia, Universidad de Concepcion, Casilla 160-C, Concepcion, Chile
Christopher Klein
Affiliation:
Astronomy Department, University of California, Berkeley, CA 94720, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Cepheids and RR Lyrae stars are important pulsating variable stars in distance scale work because they serve as standard candles. Cepheids follow well-defined period-luminosity (PL) relations defined for bands extending from optical to mid-infrared (MIR). On the other hand, RR Lyrae stars also exhibit PL relations in the near-infrared and MIR wavelengths. In this article, we review some of the recent developments and calibrations of PL relations for Cepheids and RR Lyrae stars. For Cepheids, we discuss the calibration of PL relations via the Galactic and the Large Magellanic Cloud routes. For RR Lyrae stars, we summarize some recent work in developing the MIR PL relations.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Benedict, G. F., McArthur, B. E., Fredrick, L. W., et al. 2002, AJ, 123, 473Google Scholar
Benedict, G. F., McArthur, B. E., Feast, M. W., et al. 2007, AJ, 133, 1810Google Scholar
Benedict, G. F., McArthur, B. E., Feast, M. W., et al. 2011, AJ, 142, 187Google Scholar
Bono, G. 2003, in: D. Alloin, & W. Gieren (eds.), Stellar Candles for the Extragalactic Distance Scale, Lecture Notes in Physics, 635, 85CrossRefGoogle Scholar
Bono, G., Caputo, F., Castellani, V., Marconi, M., & Storm, J. 2001, MNRAS, 326, 1183Google Scholar
Bono, G., Caputo, F., Marconi, M., & Musella, I. 2010, ApJ, 715, 277Google Scholar
Borissova, J., Rejkuba, M., Minniti, D., Catelan, M., & Ivanov, V. D. 2009, A&A, 502, 505Google Scholar
Dambis, A. K., Berdnikov, L. N., Kniazev, A. Y., et al. 2013, MNRAS, 435, 3206Google Scholar
Freedman, W. L., Madore, B. F., Gibson, B. K., et al. 2001, ApJ, 553, 47Google Scholar
Freedman, W. L., Madore, B. F., Rigby, J., Persson, S. E., & Sturch, L. 2008, ApJ, 679, 71Google Scholar
Freedman, W. L., Madore, B. F., Scowcroft, V., et al. 2012, ApJ, 758, 24CrossRefGoogle Scholar
Fouqué, P., Arriagada, P., Storm, J., et al. 2007, A&A, 476, 73Google Scholar
Gallenne, A., Kervella, P., Mérand, A., et al. 2012, A&A, 541, A87Google Scholar
García-Varela, A., Sabogal, B. E., & Ramírez-Tannus, M. C. 2013, MNRAS, 431, 2278CrossRefGoogle Scholar
Haschke, R., Grebel, E. K., & Duffau, S. 2011, AJ, 141, 158CrossRefGoogle Scholar
Humphreys, E. M. L., Reid, M. J., Greenhill, L. J., et al. 2008, ApJ, 672, 800Google Scholar
Inno, L., Matsunaga, N., Bono, G., et al. 2013, ApJ, 764, 84Google Scholar
Kanbur, S. M., Ngeow, C.-C., Nikolaev, S., et al. 2003, A&A, 411, 361Google Scholar
Kanbur, S. M. & Ngeow, C.-C. 2004, MNRAS, 350, 962Google Scholar
Klein, C. R., Richards, J. W., Butler, N. R., & Bloom, J. S. 2011, ApJ, 738, 185Google Scholar
Longmore, A. J., Fernley, J. A., & Jameson, R. F. 1986, MNRAS, 220, 279Google Scholar
Madore, B. F. & Freedman, W. L. 1991, PASP, 103, 933Google Scholar
Madore, B. F., Freedman, W. L., Rigby, J., et al. 2009, ApJ, 695, 988Google Scholar
Madore, B. F. & Freedman, W. L. 2009, ApJ, 696, 1498Google Scholar
Madore, B. F., Hoffman, D., Freedman, W. L., et al. 2013, ApJ, 776, 135Google Scholar
Majaess, D., Turner, D., & Gieren, W. 2012, PASP, 124, 1035Google Scholar
Ngeow, C.-C. 2012, ApJ, 747, 50Google Scholar
Ngeow, C.-C. & Kanbur, S. M. 2004, MNRAS, 349, 1130Google Scholar
Ngeow, C.-C. & Kanbur, S. M. 2005, MNRAS, 360, 1033CrossRefGoogle Scholar
Ngeow, C.-C. & Kanbur, S. M. 2008, ApJ, 679, 76Google Scholar
Ngeow, C.-C., Kanbur, S. M., Nikolaev, S., et al. 2005, MNRAS, 363, 831Google Scholar
Ngeow, C.-C., Kanbur, S. M., Neilson, H. R., et al. 2009, ApJ, 693, 691Google Scholar
Ngeow, C.-C., Ita, Y., Kanbur, S. M., et al. 2010, MNRAS, 408, 983Google Scholar
Pietrzyński, G., Graczyk, D., Gieren, W., et al. 2013, Nature, 495, 76Google Scholar
Riess, A. G., Macri, L., Casertano, S., et al. 2011, ApJ, 730, 119Google Scholar
Sandage, A., Tammann, G. A., & Reindl, B. 2004, A&A, 424, 43Google Scholar
Sandage, A., Tammann, G. A., Saha, A., et al. 2006, ApJ, 653, 843Google Scholar
Schaefer, B. E. 2008, AJ, 135, 112Google Scholar
Scowcroft, V., Freedman, W. L., Madore, B. F., et al. 2011, ApJ, 743, 76Google Scholar
Sollima, A., Cacciari, C., & Valenti, E. 2006, MNRAS, 372, 1675Google Scholar
Soszyński, I., Poleski, R., Udalski, A., et al. 2008, AcA, 58, 163Google Scholar
Soszyński, I., Poleski, R., Udalski, A., et al. 2010, AcA, 60, 17Google Scholar
Storm, J., Gieren, W., Fouqué, P., et al. 2011, A&A, 534, A94Google Scholar
Tammann, G. A., Sandage, A., & Reindl, B. 2003, A&A, 404, 423Google Scholar
Turner, D. G. 2010, Ap&SS, 326, 219Google Scholar
van Leeuwen, F., Feast, M. W., Whitelock, P. A., & Laney, C. D. 2007, MNRAS, 379, 723Google Scholar
Zaritsky, D., Harris, J., Thompson, I. B., & Grebel, E. K. 2004, AJ, 128, 1606Google Scholar