Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T05:18:32.672Z Has data issue: false hasContentIssue false

The diverse origin of exoplanets' eccentricities & inclinations

Published online by Cambridge University Press:  10 November 2011

Eric B. Ford*
Affiliation:
University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611-2055, USA email: eford@astro.ufl.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Radial velocity surveys have discovered over 400 exoplanets. While measuring eccentricities of low-mass planets remains a challenge, giant exoplanets display a broad range of orbital eccentricities. Recently, spectroscopic measurements during transit have demonstrated that the short-period giant planets (“hot-Jupiters”) also display a broad range of orbital inclinations (relative to the rotation axis of the host star). Both properties pose a challenge for simple disk migration models and suggest that late-stage orbital evolution can play an important role in determining the final architecture of planetary systems. One possible formation mechanism for the inclined hot-Jupiters is some form of eccentricity excitation (e.g., planet scattering, secular perturbations due to a distant planet or wide binary) followed tidal circularization. The planet scattering hypothesis also makes predictions for the population of planets at large separations. Recent discoveries of planets on wide orbits via direct imaging and highly anticipated results from upcoming direct imaging campaigns are poised to provide a new type of constraint on planet formation. This proceedings describes recent progress in understanding the formation of giant exoplanets.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Beaulieu, J.-P., et al. 2011, this volumeGoogle Scholar
Boley, A., et al. 2011, this volumeGoogle Scholar
Borucki, W. J., et al. 2011, ApJ, 736, id.19CrossRefGoogle Scholar
Chatterjee, S., Ford, E. B., Matsumura, S., & Rasio, F. A. 2008, ApJ, 686, 580Google Scholar
Chatterjee, S., Ford, E. B., & Rasio, F. A. 2011, this volume (arXiv:1012.0584)Google Scholar
Colón, K. D. & Ford, E. B. 2009, ApJ, 703, 1086Google Scholar
Fabrycky, D. C. & Winn, J. N. 2009, ApJ, 696, 1230CrossRefGoogle Scholar
Ford, E. B., Quinn, S. N., & Veras, D. 2008, ApJ, 678, 1407Google Scholar
Ford, E. B. & Rasio, F. A. 2008, ApJ, 686, 621Google Scholar
Ford, E. B., et al. 2011, submitted to ApJ (arXiv:1102.0544)Google Scholar
Hut, P. 1982, A&A, 110, 37Google Scholar
Bonavita, M., et al. 2011, this volumeGoogle Scholar
Jurić, M. & Tremaine, S. 2008, ApJ, 686, 603CrossRefGoogle Scholar
Lai, D., Foucart, F., & Lin, D. N. C. 2011, MNRAS, 412, 2790Google Scholar
Lee, M. H. & Thommes, E. W. 2009, ApJ, 702, 1662CrossRefGoogle Scholar
Lissauer, J. J., et al. 2011a, Nature, 470, 53Google Scholar
Lissauer, J. J., et al. 2011b, submitted to ApJ, arXiv:1102.0543Google Scholar
Malmberg, D., Davies, M. B., & Heggie, D. C. 2011, MNRAS, 411, 859CrossRefGoogle Scholar
Matsumura, S., Thommes, E. W., Chatterjee, S., & Rasio, F. A. 2010, ApJ, 714, 194CrossRefGoogle Scholar
Mayor, M. & Udry, S. 2008, Physica Scripta Volume T, 130, 014010CrossRefGoogle Scholar
Moorhead, A. V., et al. 2011, submitted to ApJ, arXiv:1102.0547Google Scholar
Morton, T. D. & Johnson, J. A. 2011, ApJ, 729, id.138CrossRefGoogle Scholar
Nagasawa, M., Ida, S., & Bessho, T. 2008, ApJ, 678, 498Google Scholar
Naoz, S., et al. 2011, this volumeGoogle Scholar
Payne, M. J., Boley, A. C., & Ford, E. B. 2011, in Detection and Dynamics of Transiting Exoplanets, St. Michel l'Observatoire, France, Edited by Bouchy, F., Díaz, R., & Moutou;, C.EPJ Web of Conferences, 11, 4005CrossRefGoogle Scholar
Payne, M. J., Ford, E. B., & Veras, D. 2010, ApJL, 712, L86Google Scholar
Ragozzine, D. & Holman, M. J. 2010, arXiv:1006.3727Google Scholar
Rasio, F. A. & Ford, E. B. 1996, Science, 274, 954Google Scholar
Scharf, C. & Menou, K. 2009, ApJL, 693, L113Google Scholar
Shen, Y. & Turner, E. L. 2008, ApJ, 685, 553Google Scholar
Takeda, G., Kita, R., & Rasio, F. A. 2008, ApJ, 683, 1063Google Scholar
Triaud, A. H. M. J., et al. 2010, A&A, 524, A25Google Scholar
Veras, D. & Ford, E. B. 2009a, ApJL, 690, L1CrossRefGoogle Scholar
Veras, D., Crepp, J. R., & Ford, E. B. 2009b, ApJ, 696, 1600Google Scholar
Veras, D. & Ford, E. B. 2010, ApJ, 715, 803Google Scholar
Wang, J. & Ford, E. B. 2011, submitted to MNRASGoogle Scholar
Weidenschilling, S. J. & Marzari, F. 1996, Nature, 384, 619CrossRefGoogle Scholar
Winn, J. N., Fabrycky, D., Albrecht, S., & Johnson, J. A. 2010, ApJL, 718, L145Google Scholar
Winn, J. N., et al. 2009, ApJ, 703, 2091CrossRefGoogle Scholar
Wright, J. T., et al. 2011, ApJ, 730, 93Google Scholar
Wu, Y. & Lithwick, Y. 2011, ApJ, 735, id.109CrossRefGoogle Scholar
Zakamska, N. L., Pan, M., & Ford, E. B. 2011, MNRAS, 410, 1895Google Scholar