Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T09:21:39.882Z Has data issue: false hasContentIssue false

Diversity of close-in planets and the interactions with their host stars

Published online by Cambridge University Press:  01 October 2007

Douglas N.C. Lin
Affiliation:
Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA, USA email: lin@ucolick.org Kavli Institute of Astronomy & Astrophysics, Peking University, Beijing, China
Ian Dobbs-Dixon
Affiliation:
Department of Physics, McGill University, Montreal, Canada email: iandd@physics.mcgill.ca
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Short period planets provide an exciting opportunity of constraining structural properties. Observations have revealed a diverse class of objects, including several at odds with aspects of conventional planet formation theories. Here we present several scenarios that may help in producing the observed diversity. For short period planets in particular, their proximity to their host stars suggests that star-planet interactions may play an important role in their orbital and structural evolution. We first show that the penetration of a non-synchronous stellar magnetic field into short period planets will provide a significant source of energy for planetary expansion and may help stall inward migration. In addition to magnetic dissipation, the intense irradiation from the host star will drive atmospheric flows, whose behaviour is strongly influenced by the opacity of the envelope. Finally, we explore the role of late stage planetesimal and embryo bombardment on the structure of gas-giant planets. Dynamical trapping during migration, followed by orbital destablization during the final stage of gas-giant growth, leads to a surge in the collision rate. Such collisions will lead to preferential core growth and inflated radii. All three of these processes, occurring late in the planetary formation process, will produce a large range in planetary properties and may account for the diversity we see today.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Bodenheimer, P., Lin, D. N. C., & Mardling, R. A. 2001, ApJ, 548, 466CrossRefGoogle Scholar
Brown, T. M., Charbonneau, D., Gilliland, R. L., Noyes, R. W., & Burrows, A. 2001, ApJ, 552, 699CrossRefGoogle Scholar
Burrows, A., Guillot, T., Hubbard, W. B., Marley, M. S., Saumon, D., Lunine, J. I., & Sudarsky, D. 2000, ApJL, 534, L97Google Scholar
Burrows, A., Hubeny, I., Budaj, J., & Hubbard, W. B. 2007a, ApJ, 661, 502Google Scholar
Burrows, A., Hubeny, I., Budaj, J., Knutson, H. A., & Charbonneau, D. 2007b, ApJL, 668, L171Google Scholar
Campbell, C. G. 1983, MNRAS, 205, 1031CrossRefGoogle Scholar
Charbonneau, D., Allen, L. E., Megeath, S. T., Torres, G., Alonso, R., Brown, T. M., Gilliland, R. L., Latham, D. W., Mandushev, G., O'Donovan, F. T., & Sozzetti, A. 2005, ApJ, 626, 523Google Scholar
Cho, J. Y.-K., Menou, K., Hansen, B., & Seager, S. 2006, ArXiv Astrophysics e-printsGoogle Scholar
Cho, J. Y.-K., Menou, K., Hansen, B. M. S., & Seager, S. 2003, ApJL, 587, L117CrossRefGoogle Scholar
Cooper, C. S., & Showman, A. P. 2005, ApJL, 629, L45CrossRefGoogle Scholar
Cowan, N. B., Agol, E., & Charbonneau, D. 2007, MNRAS, 552Google Scholar
Deming, D., Harrington, J., Seager, S., & Richardson, L. J. 2006, ApJ, 644, 560, secondary Ecclipse Discovery Paper for HD189733bCrossRefGoogle Scholar
Deming, D., Seager, S., Richardson, L. J., & Harrington, J. 2005, Nature, 434, 740CrossRefGoogle Scholar
Dermott, S. F. 1970, MNRAS, 149, 35Google Scholar
Dobbs-Dixon, I., & Lin, D. N. C. 2008, ApJ, 673, 513CrossRefGoogle Scholar
Dobbs-Dixon, I., Lin, D. N. C., & Mardling, R. A. 2004, ApJ, 610, 464Google Scholar
Goldreich, P., & Lynden-Bell, D. 1969, ApJ, 156, 59Google Scholar
Gu, P.-G., Bodenheimer, P. H., & Lin, D. N. C. 2004, ApJ, 608, 1076Google Scholar
Guillot, T., Stevenson, D. J., Hubbard, W. B., & Saumon, D. 2004, The interior of Jupiter (Jupiter. The Planet, Satellites and Magnetosphere), 35–57Google Scholar
Harrington, J., Hansen, B. M., Luszcz, S. H., Seager, S., Deming, D., Menou, K., Cho, J. Y.-K., & Richardson, L. J. 2006, Science, 314, 623CrossRefGoogle Scholar
Hawley, J. F., Wilson, J. R., & Smarr, L. L. 1984, ApJS, 55, 211Google Scholar
Ida, S., & Lin, D. N. C. 2004, ApJ, 604, 388Google Scholar
Johns-Krull, C. M. 2007, ApJ, 664, 975CrossRefGoogle Scholar
Kley, W., & Hensler, G. 1987, A&A, 172, 124Google Scholar
Knutson, H. A., Charbonneau, D., Allen, L. E., Burrows, A., & Megeath, S. T. 2007a, ArXiv e-prints, 709Google Scholar
Knutson, H. A., Charbonneau, D., Allen, L. E., Fortney, J. J., Agol, E., Cowan, N. B., Showman, A. P., Cooper, C. S., & Megeath, S. T. 2007b, Nature, 447, 183CrossRefGoogle Scholar
Kretke, K. A.Lin, D. N. C., Turner, N. J., 2008, in: Sun, Y.-S., Ferraz-Mello, S. & Zhou, J.-L., (eds.), Exoplanets: Detection, Formation and Dynamics, Proc. IAU Symposium No. 249 (Suzhou,China), p. 293Google Scholar
Koenigl, A. 1991, ApJL, 370, L39CrossRefGoogle Scholar
Laine, R., & Lin, D. 2008, in preparationGoogle Scholar
Levermore, C. D., & Pomraning, G. C. 1981, ApJ, 248, 321Google Scholar
Li, S., & Lin, D. 2008, in preparationGoogle Scholar
Lin, D. N. C., Bodenheimer, P., & Richardson, D. C. 1996, Nature, 380, 606Google Scholar
Marcy, G., Butler, R. P., Fischer, D., Vogt, S., Wright, J. T., Tinney, C. G., & Jones, H. R. A. 2005, Progress of Theoretical Physics Supplement, 158, 24CrossRefGoogle Scholar
Mardling, R. A., & Lin, D. N. C. 2004, ApJ, 614, 955Google Scholar
Mayor, M., & Queloz, D. 1995, Nature, 378, 355CrossRefGoogle Scholar
Menou, K., Cho, J. Y.-K., Seager, S., & Hansen, B. M. S. 2003, ApJL, 587, L113Google Scholar
Nagasawa, M., & Lin, D. N. C. 2005, ApJ, 632, 1140CrossRefGoogle Scholar
Novak, G. S., Lai, D., & Lin, D. N. C. 2003, 294, 177CrossRefGoogle Scholar
Ogilvie, G. I., & Lin, D. N. C. 2007, ArXiv Astrophysics e-printsGoogle Scholar
Pollack, J. B., Hubickyj, O., Bodenheimer, P., Lissauer, J. J., Podolak, M., & Greenzweig, Y. 1996, Icarus, 124, 62Google Scholar
Richardson, L. J., Deming, D., Horning, K., Seager, S., & Harrington, J. 2007, ArXiv Astrophysics e-printsGoogle Scholar
Richardson, L. J., Deming, D., & Seager, S. 2003, ApJ, 597, 581Google Scholar
Richardson, L. J., Harrington, J., Seager, S., & Deming, D. 2006, ApJ, 649, 1043CrossRefGoogle Scholar
Setiawan, J., Henning, T., Launhardt, R., Muller, A., Weise, P., & Kurster, M. 2008, Nature, 451, 38Google Scholar
Showman, A. P., & Guillot, T. 2002, A&A, 385, 166Google Scholar
Swain, M. R., Bouwman, J., Akeson, R., Lawler, S., & Beichman, C. 2007, ArXiv Astrophysics e-printsGoogle Scholar
van Leer, B. 1977, Journal of Computational Physics, 23, 276Google Scholar
Winn, J. N., & Holman, M. J. 2005, ApJL, 628, L159Google Scholar
Zhang, X. J., Kretke, K. A.Lin, D. N. C. 2008, in: Sun, Y.-S., Ferraz-Mello, S. & Zhou, J.-L., (eds.), Exoplanets: Detection, Formation and Dynamics, Proc. IAU Symposium No. 249 (Suzhou,China), p. 309Google Scholar
Zhou, J.-L., Aarseth, S. J., Lin, D. N. C., & Nagasawa, M. 2005, ApJL, 631, L85Google Scholar
Zhou, J.-L., & Lin, D. N. C. 2007, ApJ, 666, 447CrossRefGoogle Scholar
Zhou, J.-L., Lin, D. N. C., & Sun, Y.-S. 2007, ApJ, 666, 423CrossRefGoogle Scholar