Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-14T06:27:43.918Z Has data issue: false hasContentIssue false

Does a hadron-quark phase transition in dense matter preclude the existence of massive neutron stars?

Published online by Cambridge University Press:  20 March 2013

N. Chamel
Affiliation:
Institut d'Astronomie et d'Astrophysique, CP-226, Université Libre de Bruxelles, 1050 Brussels, Belgium
A. F. Fantina
Affiliation:
Institut d'Astronomie et d'Astrophysique, CP-226, Université Libre de Bruxelles, 1050 Brussels, Belgium
J. M. Pearson
Affiliation:
Dépt. de Physique, Université de Montréal, Montréal (Québec), H3C 3J7Canada
S. Goriely
Affiliation:
Institut d'Astronomie et d'Astrophysique, CP-226, Université Libre de Bruxelles, 1050 Brussels, Belgium
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the impact of a hadron-quark phase transition on the maximum neutron-star mass. The hadronic part of the equation of state relies on the most up-to-date Skyrme nuclear energy density functionals, fitted to essentially all experimental nuclear mass data and constrained to reproduce the properties of infinite nuclear matter as obtained from microscopic calculations using realistic forces. We show that the softening of the dense matter equation of state due to the phase transition is not necessarily incompatible with the existence of massive neutron stars like PSR J1614–2230.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Chamel, N., Fantina, A. F., Pearson, J. M., & Goriely, S. 2011, Phys. Rev. C, 84, 062802CrossRefGoogle Scholar
Chamel, N., Fantina, A. F., Pearson, J. M., & Goriely, S. 2012, arXiv:1205.0983Google Scholar
Clark, J. S., Goodwin, S. P., Crowther, P. A., Kaper, L, Fairbairn, M., Langer, N., & Brocksopp, C. 2002, Astron. Astrophys., 392, 909Google Scholar
Demorest, P. B., Pennucci, T., Ransom, S. M., Roberts, M. S. E., & Hessels, J. W. T. 2010, Nature, 467, 1081CrossRefGoogle Scholar
Freire, P. C. C., Ransom, S. M., Bégin, S., Stairs, I. H., Hessels, J. W. T., Frey, L. H., & Camilo, F. 2008, Astrophys. J., 675, 670CrossRefGoogle Scholar
Goriely, S., Chamel, N., & Pearson, J. M. 2010, Phys. Rev. C, 82, 035804CrossRefGoogle Scholar
Haensel, P., Potekhin, A. Y., & Yakovlev, D. G. 2007, Astrophys. Space Sc. L., 326Google Scholar
Kurkela, A., Romatschke, P., & Vuorinen, A. 2010, Phys. Rev. D, 81, 105021Google Scholar
Oppenheimer, J. R. & Volkoff, G. M. 1939, Phys. Rev., 55, 374CrossRefGoogle Scholar
Pearson, J. M., Goriely, S., & Chamel, N. 2011, Phys. Rev. C, 83, 065810Google Scholar
Pearson, J. M., Chamel, N., Goriely, S., & Ducoin, C. 2012, Phys. Rev. C, 85, 065803Google Scholar
Tolman, R. C. 1939, Phys. Rev., 55, 364CrossRefGoogle Scholar
van Kerkwijk, M. H., Breton, R. P., & Kulkarni, S. R. 2011, Astrophys. J., 728, 95CrossRefGoogle Scholar