Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T06:11:55.654Z Has data issue: false hasContentIssue false

The dynamics of Andromeda's dwarf galaxies and stellar streams

Published online by Cambridge University Press:  21 March 2017

Michelle L. M. Collins
Affiliation:
Department of Physics, University of Surrey, Guildford, GU2 7XH, UK email: m.collins@surrey.ac.uk
R. Michael Rich
Affiliation:
Dept. of Astronomy UCLA, Los Angeles CA, USA
Rodrigo Ibata
Affiliation:
L'Observatoire de Strasbourg, Strasbourg, France
Nicolas Martin
Affiliation:
L'Observatoire de Strasbourg, Strasbourg, France
Janet Preston
Affiliation:
Department of Physics, University of Surrey, Guildford, GU2 7XH, UK email: m.collins@surrey.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

As part of the Z-PAndAS Keck II DEIMOS survey of resolved stars in our neighboring galaxy, Andromeda (M31), we have built up a unique data set of measured velocities and chemistries for thousands of stars in the Andromeda stellar halo, particularly probing its rich and complex substructure. In this contribution, we will discuss the structural, dynamical and chemical properties of Andromeda's dwarf spheroidal galaxies, and how there is no observational evidence for a difference in the evolutionary histories of those found on and off M31's vast plane of satellites. We will also discuss a possible extension to the most significant merger event in M31 - the Giant Southern Stream - and how we can use this feature to refine our understanding of M31's mass profile, and its complex evolution.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Brasseur, C. et al. 2011, ApJ, 743, 179 CrossRefGoogle Scholar
Chapman, S. C. et al. 2006, ApJ, 653, 255 CrossRefGoogle Scholar
Chapman, S. C. et al. 2008, MNRAS, 390, 1437 Google Scholar
Collins, M. L. M. et al. 2010, MNRAS, 407, 2411 CrossRefGoogle Scholar
Collins, M. L. M. et al. 2011, MNRAS, 413, 1548 CrossRefGoogle Scholar
Collins, M. L. M. et al. 2013, ApJ, 768, 172 CrossRefGoogle Scholar
Collins, M. L. M. et al. 2014, ApJ, 783, 7 CrossRefGoogle Scholar
Collins, M. L. M. et al. 2015, ApJ (Letter), 799, 13L CrossRefGoogle Scholar
Fardal, M. A. et al. 2013, MNRAS, 434, 2779 CrossRefGoogle Scholar
Gilbert, K. M. et al. 2009, ApJ, 705, 1275 CrossRefGoogle Scholar
Hammer, F. et al. 2013, MNRAS, 431, 3543 CrossRefGoogle Scholar
Ibata, R. A. et al. 2004, MNRAS, 351, 117 CrossRefGoogle Scholar
Ibata, R. A. et al. 2005, ApJ, 634, 287 CrossRefGoogle Scholar
Ibata, R. A. et al. 2013, Nature, 493, 62 CrossRefGoogle Scholar
Ibata, R. A. et al. 2014, ApJ, 784, 6 CrossRefGoogle Scholar
Kirby, E. et al. 2013, ApJ, 779, 102 CrossRefGoogle Scholar
McConnachie, A. W. et al. 2009, Nature, 461, 66 CrossRefGoogle Scholar
McConnachie, A. W. et al. 2003, MNRAS, 343, 1335 CrossRefGoogle Scholar
Weisz, D. R. et al. 2014, ApJ, 789, 24 CrossRefGoogle Scholar