Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T19:47:11.374Z Has data issue: false hasContentIssue false

Effects of Stellar-Mass Black Holes on Massive Star Cluster Evolution

Published online by Cambridge University Press:  31 March 2017

Sourav Chatterjee
Affiliation:
Center for Interdisciplinary Exploration and Research in Astrophysics, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA email: sourav.chatterjee@northwestern.edu
Meagan Morscher
Affiliation:
Center for Interdisciplinary Exploration and Research in Astrophysics, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA email: sourav.chatterjee@northwestern.edu
Carl L. Rodriguez
Affiliation:
Center for Interdisciplinary Exploration and Research in Astrophysics, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA email: sourav.chatterjee@northwestern.edu
Bharat Pattabiraman
Affiliation:
Center for Interdisciplinary Exploration and Research in Astrophysics, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA email: sourav.chatterjee@northwestern.edu
Frederic A. Rasio
Affiliation:
Center for Interdisciplinary Exploration and Research in Astrophysics, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA email: sourav.chatterjee@northwestern.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent observations have revealed the existence of stellar mass black hole (BH) candidates in some globular clusters (GC) in the Milky Way and in other galaxies. Given that the detection of BHs is challenging, these detections likely indicate the existence of large populations of BHs in these clusters. This is in direct contrast to the past understanding that at most a handful of BHs may remain in old GCs due to quick mass segregation and rapid mutual dynamical ejection. Modern realistic star-by-star numerical simulations suggest that the retention fraction of BHs is typically much higher than what was previously thought. The BH dynamics near the cluster center leads to dynamical formation of new binaries and dynamical ejections, and acts as a persistent and significant energy source for these clusters. We have started exploring effects of BHs on the global evolution and survival of star clusters. We find that the evolution as well as survival of massive star clusters can critically depend on the details of the initial assumptions related to BH formation physics, such as natal kick distribution, and the initial stellar mass function (IMF). In this article we will present our latest results.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Altamirano, D., Patruno, A., Heinke, C. O., Markwardt, C., et al. 2010 ApJ, 712, 58 CrossRefGoogle Scholar
Altamirano, D., Wijnands, R., Heinke, C. O., et al., 2012 The Astronomer's Telegram, 4264, 1 Google Scholar
Belczynski, K., Kalogera, V., & Bulik, T., 2002 ApJ, 572, 407 CrossRefGoogle Scholar
Bozzo, E., Ferrigno, C., Stevens, J., Belloni, T. M., Rodriguez, J., et al., 2011 A&A, 350, 649 Google Scholar
Brandt, W. N., Podsiadlowski, P., & Sigurdsson, S., 1995 MNRAS, 277, 35 Google Scholar
Breen, P. G. & Heggie, D. C., 2013 MNRAS, 432, 2779 CrossRefGoogle Scholar
Chatterjee, S., Fregeau, J. M., Umbreit, S., & Rasio, F. A., 2010 ApJ, 719, 915 CrossRefGoogle Scholar
Chatterjee, S., Umbreit, S., Fregeau, J. M., & Rasio, F. A., 2013 MNRAS, 429, 2881 CrossRefGoogle Scholar
Chernoff, D. F. & Weinberg, M. D., 1990 ApJ, 351, 121 CrossRefGoogle Scholar
Chomiuk, L., Strader, J., Maccarone, T. J., Miller-Jones, J. C. A., et al., 2013 ApJ, 777, 69 CrossRefGoogle Scholar
Dhawan, V., Mirabel, I. F., Ribó, M., & Rodrigues, I., 2007 ApJ, 668, 430 CrossRefGoogle Scholar
Fragos, T., Willems, B., Kalogera, V., Ivanova, N., Rockefeller, G., et al., 2009 ApJ, 697, 1057 CrossRefGoogle Scholar
Fregeau, J. M., & Rasio, F. A., 2007 ApJ, 658, 1047 CrossRefGoogle Scholar
Fryer, C. L., & Kalogera, V., 2001 ApJ, 554, 548 CrossRefGoogle Scholar
Gualandris, A., Colpi, M., Portegies Zwart, S., & Possenti, A., 2005 ApJ, 618, 845 CrossRefGoogle Scholar
Hénon, M. H., 1971 Ap&SS, 14, 151 Google Scholar
Hurley, J. R., Pols, O. R., & Tout, C. A., 2000 MNRAS, 315, 543 CrossRefGoogle Scholar
Hurley, J. R., Tout, C. A., & Pols, O. R., 2002 MNRAS, 329, 897 CrossRefGoogle Scholar
Irwin, J. A., Brink, T. G., Bregman, J. N., & Roberts, T. P., 2010 ApJ, 712, 1 CrossRefGoogle Scholar
Kalogera, V., King, A. R., & Rasio, F. A. 2004 ApJ, 601, 171 CrossRefGoogle Scholar
King, I., 1962 AJ, 67, 471 CrossRefGoogle Scholar
King, I. R., 1965 AJ, 70, 376 CrossRefGoogle Scholar
Kulkarni, S. R., Hut, P., & McMillan, S. 1993 Nature, 364, 421 CrossRefGoogle Scholar
Lewin, W. H. G. & van der Klis, M. 2006 Compact Stellar X-ray Sources, Ed. Lewin, Walter & van der Klis, Michiel, Cambridge Astrophysics Series, No. 39. Cambridge, UK: Cambridge University Press, ISBN 978-0-521-82659-4 CrossRefGoogle Scholar
Maccarone, T. J., Kundu, A., Zepf, S. E., & Rhode, K. L., 2007 Nature, 445, 183 CrossRefGoogle Scholar
Morscher, M., Umbreit, S., Farr, W. M., & Rasio, F. A., 2013 ApJ, 763, 15 CrossRefGoogle Scholar
Morscher, M., Pattabiraman, B., Rodriguez, C., Rasio, F. A., & Umbreit, S., 2015 ApJ, 800, 9 CrossRefGoogle Scholar
Nelemans, G., Tauris, T. M. & van den Heuvel, E. P. J., 1999 A&A, 352, 87 Google Scholar
Pattabiraman, B., Umbreit, S., Liao, W.k., Choudhary, A., et al., 2013 ApJS, 204, 15 CrossRefGoogle Scholar
Pejcha, O., Thompson, T. A., 2015 ApJ, 801, 90 CrossRefGoogle Scholar
Portegies Zwart, S. F. & McMillan, S. L. W. 2000 ApJ, 528, 17 CrossRefGoogle Scholar
Repetto, S., Davies, M. B., & Sigurdsson, S., 2012 MNRAS, 425, 2799 CrossRefGoogle Scholar
Sigurdsson, S. & Hernquist, L. 1993 Nature, 364, 423 CrossRefGoogle Scholar
Spitzer, L. Jr. 1969 ApJL, 158, 139 CrossRefGoogle Scholar
Strader, J., Chomiuk, L., Maccarone, T. J., Miller-Jones, J. C. A., et al., 2012 Nature, 490, 71 CrossRefGoogle Scholar
Umbreit, S., 2012 Nature, 490, 46 CrossRefGoogle Scholar
Umbreit, S., Fregeau, J. M., Chatterjee, S., & Rasio, F. A., 2012 ApJ, 750, 31 CrossRefGoogle Scholar
van Zyl, L., Charles, P. A., Arribas, S., Naylor, T., Mediavilla, E., et al. 2004 MNRAS, 350, 649 CrossRefGoogle Scholar
Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M., 2001 A&A, 369, 574 Google Scholar
Willems, B., Henninger, M., Levin, T., Ivanova, N., Kalogera, V., et al., 2005 2005, 625, 324 Google Scholar
Wong, T. W., Valsecchi, F., Fragos, T., & Kalogera, V., 2012 ApJ, 747, 111 CrossRefGoogle Scholar
Wong, T. W., Valsecchi, F., Ansari, A., Fragos, T., Glebbeek, E., et al., 2014 ApJ, 790, 119 CrossRefGoogle Scholar