Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-14T17:14:18.939Z Has data issue: false hasContentIssue false

Efficiency and success rates of the Pristine survey from spectroscopic follow-up

Published online by Cambridge University Press:  02 August 2018

Kris Youakim
Affiliation:
Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, Potsdam 14482, Germany
Else Starkenburg
Affiliation:
Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, Potsdam 14482, Germany
David Aguado
Affiliation:
Instituto de Astrofísica de Canarias, Vía Láctea, 38205 La Laguna, Tenerife, Spain Universidad de La Laguna, Departamento de Astrofísica, 38206 La Laguna, Tenerife, Spain
Nicolas Martin
Affiliation:
Université de Strasbourg, CNRS, Observatoire astronomique de Strasbourg, UMR 7550, F-67000 Strasbourg, France email: kyouakim@aip.de
the Pristine collaboration
Affiliation:
Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, Potsdam 14482, Germany Instituto de Astrofísica de Canarias, Vía Láctea, 38205 La Laguna, Tenerife, Spain Universidad de La Laguna, Departamento de Astrofísica, 38206 La Laguna, Tenerife, Spain Université de Strasbourg, CNRS, Observatoire astronomique de Strasbourg, UMR 7550, F-67000 Strasbourg, France email: kyouakim@aip.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Pristine survey uses narrow-band photometry on the region of the Ca II H & K absorption lines to find extremely metal-poor stars. With a spectroscopic follow-up sample of 205 stars in the magnitude range 14 < V < 18, we compute the success rates for finding extremely metal-poor stars and modify the selection criteria used to select stars for follow-up. This reduces the sample to 149 stars, and from these we report success rates of 22% for recovering stars with [Fe/H] < −3.0 and 70% for [Fe/H] < −2.5. When compared to previous works that search for extremely metal-poor stars, the success rates of Pristine show an improvement in efficiency by a factor of ~4 − 5.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Aguado, D. S., Allende Prieto, C., González Hernández, J. I., et al. 2016, Astronomy and As-trophysics, 593, A10Google Scholar
Allende Prieto, C., Fernández-Alvar, E., Aguado, D. S., et al. 2015, Astronomy and Astrophysics, 579, A98Google Scholar
Allende Prieto, C., Fernández-Alvar, E., Schlesinger, K. J., et al. 2014, Astronomy and Astro-physics, 568, A7Google Scholar
Allende Prieto, C., Rebolo, R., García López, R. J., et al. 2000, Astronomical Journal, 120, 1516Google Scholar
An, D., Beers, T. C., Johnson, J. A., et al. 2013, Astrophysical Journal, 763, 65Google Scholar
Anthony-Twarog, B. J., Twarog, B. A., Laird, J. B., & Payne, D., 1991, Astronomical Journal, 101, 1902Google Scholar
Aoki, W., Beers, T. C., Lee, Y. S., et al. 2013, Astronomical Journal, 145, 13Google Scholar
Beers, T. C., Preston, G. W., & Shectman, S. A., 1985, Astronomical Journal, 90, 2089Google Scholar
Caffau, E., Bonifacio, P., Sbordone, L., et al. 2013, Astronomy and Astrophysics, 560, A71Google Scholar
Christlieb, N., Wisotzki, L., & Graßhoff, G., 2002, Astronomy and Astrophysics, 391, 397Google Scholar
Dalton, G., Trager, S., Abrams, D. C., et al. 2016, in Proceedings of the SPIE, Vol. 9908, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 99081GGoogle Scholar
Dalton, G., Trager, S., Abrams, D. C., et al. 2014, in Proceedings of the SPIE, Vol. 9147, Ground-based and Airborne Instrumentation for Astronomy V, 91470LGoogle Scholar
Dalton, G., Trager, S. C., Abrams, D. C., et al. 2012, in Proceedings of the SPIE, Vol. 8446, Ground-based and Airborne Instrumentation for Astronomy IV, 84460PGoogle Scholar
de Jong, R. S., Barden, S. C., Bellido-Tirado, O., et al. 2016, in Proceedings of the SPIE, Vol. 9908, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 99081OGoogle Scholar
Howes, L. M., Asplund, M., Casey, A. R., et al. 2014, Monthly Notices of the RAS, 445, 4241Google Scholar
Ibata, R., McConnachie, A., Cuillandre, J.-C., et al. 2017, ArXiv e-printsGoogle Scholar
Ivezić, Ž., Sesar, B., Jurić, M., et al. 2008, Astrophysical Journal, 684, 287Google Scholar
Keller, S. C., Bessell, M. S., Frebel, A., et al. 2014, Nature, 506, 463Google Scholar
Keller, S. C., Schmidt, B. P., Bessell, M. S., et al. 2007, Publications of the Astron. Soc. of Australia, 24, 1Google Scholar
McConnachie, A. W., Babusiaux, C., Balogh, M., et al. 2016, ArXiv e-printsGoogle Scholar
Robin, A. C., Reylé, C., Derrière, S., & Picaud, S., 2003, Astronomy and Astrophysics, 409, 523Google Scholar
Schlaufman, K. C. & Casey, A. R., 2014, Astrophysical Journal, 797, 13Google Scholar
Schörck, T., Christlieb, N., Cohen, J. G., et al. 2009, Astronomy and Astrophysics, 507, 817Google Scholar
Starkenburg, E., Martin, N., Youakim, K., et al. 2017a, ArXiv e-printsGoogle Scholar
Takada, M., Ellis, R. S., Chiba, M., et al. 2014, Publications of the ASJ, 66, R1Google Scholar
Youakim, K., Starkenburg, E., Aguado, D. S., et al. 2017, Monthly Notices of the RAS, 472, 2963Google Scholar