Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T06:57:54.644Z Has data issue: false hasContentIssue false

Evolution & Explosion of Massive Stars Leading to IIP-IIL SNe with MESA & SNEC

Published online by Cambridge University Press:  17 October 2017

Sanskriti Das
Affiliation:
Department of Physics, Indian Institute of Technology Bombay, Mumbai- 400076, India email: dassanskriti@gmail.com
Alak Ray
Affiliation:
Dept. of Astronomy & AstroPhysics, Tata Institute of Fundamental Research, Mumbai- 400005, India email: akr@tifr.res.in
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We show how the dense shells of circumstellar gas immediately outside the red supergiants(RSGs) can affect the early optical light curves of Type II-P SNe taking the example of 2013ej. The peak in V, R and I bands, decline rate after peak and plateau length are found to be strongly influenced by the dense CSM formed due to enhanced mass loss during the oxygen and silicon burning stage of the progenitor. We find that the required explosion energy for the progenitors with CSM is reduced by almost a factor of 2.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Bose, S. et al. 2015, ApJ, 806, 160, 18 pp.CrossRefGoogle Scholar
Cardelli, J. A., Geoferey, G. C. & Mathis, J. S., 1989, ApJ, 345:245256 Google Scholar
Cedrés, B., Cepa, J., Bongiovanni, Á. et al. 2012, A&A, 545, A43 Google Scholar
Chakraborti, S. et al. 2016, ApJ, 817, 22, 8 pp.CrossRefGoogle Scholar
Fraser, M. et al. 2014, MNRAS, 439, L56L60 Google Scholar
Huang, F. et al. 2015, ApJ, 807, 59, 12 pp.CrossRefGoogle Scholar
Maund, J. R., 2017, MNRAS, 2017arXiv170401957MGoogle Scholar
Moriya, T., Tominaga, N., Blinnikov, S. I., Baklanov, P. V., & Sorokina, E. I. 2011, MNRAS, 415, 199213 Google Scholar
Moriya, T. 2014, A & A, 564, A83 Google Scholar
Moriya, T. J., Yoon, S. C., Gräfener, G., & Blinnikov, S. I., 2017 arXiv170303084MGoogle Scholar
Morozova, V., Ott, C. D., & Piro, A. L., 2015, Astrophysics Source Code Library, record ascl:1505.033Google Scholar
Morozova, V. et al. 2015, ApJ, 814, 63, 18 pp.Google Scholar
Morozova, V., Piro, A. L. & Valenti, S. 2017, ApJ, 838, 28, 12 pp.Google Scholar
Paxton, B. et al., 2011, ApJS, 192, 3, 35 pp.Google Scholar
Paxton, B. et al., 2013, ApJS, 208, 4, 42 pp.Google Scholar
Paxton, B. et al., 2015, ApJSS, 220, 15, 44 pp.Google Scholar
Quataert, E. & Shiode, J., 2012, MNRAS, 423, L92L96 Google Scholar
Richmond, M. W. 2014, JAAVSO, 42, 333 Google Scholar
Sanders, N. E. et al. 2015, ApJ, 799, 208, 23 pp.Google Scholar
Smith, N. et al. 2011, MNRAS, 412, 1512 Google Scholar
Smith, N. & Arnett, D. W., 2014, ApJ, 785, 82, 12 pp.Google Scholar
Valenti, S. et al. 2014, MNRAS, 438, L101L105 Google Scholar
Valenti, S. et al. 2015, MNRAS, 448, 26082616 CrossRefGoogle Scholar
Valenti, S. et al. 2016, MNRAS, 459, 39393962 CrossRefGoogle Scholar
Yaron, O. et al. 2017, Nature Physics, 4025 Google Scholar
Yuan, F. et al. 2016, MNRAS 461, 20032018 CrossRefGoogle Scholar