Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-14T10:29:31.077Z Has data issue: false hasContentIssue false

Evolution of binary supermassive black holes and the final-parsec problem

Published online by Cambridge University Press:  07 March 2016

Eugene Vasiliev*
Affiliation:
Lebedev Physical Institute, Moscow, Russia email: eugvas@lpi.ru
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I review the evolution of binary supermassive black holes and focus on the stellar-dynamical mechanisms that may help to overcome the final-parsec problem – the possible stalling of the binary at a separation much larger than is required for an efficient gravitational wave emission. Recent N-body simulations have suggested that a departure from spherical symmetry in the nucleus of the galaxy may keep the rate of interaction of stars with the binary at a high enough level so that the binary continues to shrink rather rapidly. However, a major problem of all these simulations is that they do not probe the regime where collisionless effects are dominant – in other words, the number of particles in the simulation is still not sufficient to reach the asymptotic behavior of the system. I present a novel Monte Carlo method for simulating both collisional and collisionless evolution of non-spherical stellar systems, and apply it for the problem of binary supermassive black hole evolution. I show that in triaxial galaxies the final-parsec problem is largely non-existent, while in the axisymmetric case it seems to still exist in the limit of purely collisionless regime relevant for real galaxies, but disappears in the N-body simulations where the feasible values of N are still too low to get rid of collisional effects.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Amaro-Seoane, P., Sesana, A., Hoffman, L., et al. 2010, MNRAS, 402, 2308CrossRefGoogle Scholar
Begelman, M. C., Blandford, R. D., & Rees, M. J. 1980, Nature, 287, 307CrossRefGoogle Scholar
Berczik, P., Merritt, D., & Spurzem, R. 2005, ApJ, 633, 680CrossRefGoogle Scholar
Berczik, P., Merritt, D., Spurzem, R., & Bischof, H. 2006, ApJL, 642, L21CrossRefGoogle Scholar
Brockamp, M., Küpper, A., Thies, I., Baumgardt, H., & Kroupa, P. 2014, MNRAS, 441, 150CrossRefGoogle Scholar
Chatterjee, P., Hernquist, L., & Loeb, A. 2003, ApJ, 592, 32CrossRefGoogle Scholar
Chen, X., Madau, P., Sesana, A., & Liu, F.-K. 2009, ApJL, 697, L149CrossRefGoogle Scholar
Dullo, B. & Graham, A. 2014, MNRAS, 444, 2700CrossRefGoogle Scholar
Ferrarese, L. & Ford, E. 2005, Space Sci. Revs, 116, 523CrossRefGoogle Scholar
Frank, J. & Rees, M. 1976, MNRAS, 176, 633CrossRefGoogle Scholar
Freitag, M. & Benz, W. 2002, A&A, 394, 345Google Scholar
Giersz, M., Heggie, D., Hurley, J., & Hypki, A. 2013, MNRAS, 431, 2184CrossRefGoogle Scholar
Harfst, S., Gualandris, A., Merritt, D., Spurzem, R., Portegies Zwart, S., & Berczik, P. 2007, New Astron., 12, 357CrossRefGoogle Scholar
Hénon, M., 1971, Ap&SS, 13, 284Google Scholar
Hernquist, L. & Ostriker, J. 1992, ApJ, 386, 375CrossRefGoogle Scholar
Holley-Bockelmann, K. & Sigurdsson, S. 2006, arXiv:astro-ph/0601520Google Scholar
Iwasawa, M., Funato, Y., & Makino, J. 2006, ApJ, 651, 1059CrossRefGoogle Scholar
Khan, F. M., Just, A., & Merritt, D. 2011, ApJ, 732, 89CrossRefGoogle Scholar
Khan, F. M., Preto, M., Berczik, P., Berentzen, I., Just, A., & Spurzem, R. 2012, ApJ, 749, 147CrossRefGoogle Scholar
Khan, F. M., Holley-Bockelmann, K., Berczik, P., & Just, A. 2013, ApJ, 773, 100CrossRefGoogle Scholar
Kormendy, J. & Ho, L. 2013, ARA&A, 51, 511Google Scholar
Lightman, A. & Shapiro, S. 1977, ApJ, 211, 244CrossRefGoogle Scholar
Lodato, G., Nayakshin, S., King, A., & Pringle, J. 2009, MNRAS, 298, 1392CrossRefGoogle Scholar
Makino, J. & Funato, Y. 2004, ApJ, 602, 93CrossRefGoogle Scholar
Meiron, Y. & Laor, A. 2012, MNRAS, 422, 117CrossRefGoogle Scholar
Meiron, Y., Li, B., Holley-Bockelmann, K., & Spurzem, R. 2014, ApJ, 792, 98CrossRefGoogle Scholar
Merritt, D., 2013, Classical & Quantum Gravity, 244005CrossRefGoogle Scholar
Merritt, D., Mikkola, S., & Szell, A. 2007, ApJ, 671, 53CrossRefGoogle Scholar
Merritt, D. & Poon, M.-Y. 2004, ApJ, 606, 788CrossRefGoogle Scholar
Milosavljević, M. & Merritt, D. 2001, ApJ, 563, 34CrossRefGoogle Scholar
Milosavljević, M., Merritt, D., Rest, A., & van den Bosch, F. 2002, MNRAS, 331, L51CrossRefGoogle Scholar
Milosavljević, M. & Merritt, D. 2003a, in: Centrella, J. & Barnes, S. (eds.), The Astrophysics of Gravitational Wave Sources, AIP Conf. Proc.(Melville, NY: AIP), 686, p. 201Google Scholar
Milosavljević, M. & Merritt, D. 2003b, ApJ, 596, 860CrossRefGoogle Scholar
Pattabiraman, B., Umbreit, S., Liao, W.-K., Choudhary, A., Kalogera, V., Memik, G., & Rasio, F. 2013, ApJS, 204, 15CrossRefGoogle Scholar
Perets, H. & Alexander, T. 2008, ApJ, 677, 146CrossRefGoogle Scholar
Poon, M. Y. & Merritt, D. 2001, 549, 192CrossRefGoogle Scholar
Preto, M., Berentzen, I., Berczik, P., & Spurzem, R. 2011, ApJL, 732, L26CrossRefGoogle Scholar
Roškar, R., Mayer, L., Fiacconi, D., Kazantzidis, S., Quinn, T., & Wadsley, J. 2014, arXiv:1406.4505Google Scholar
Quinlan, G. 1996, New Astron., 1, 35CrossRefGoogle Scholar
Quinlan, G. & Hernquist, L. 1997, New Astron., 2, 533CrossRefGoogle Scholar
Sesana, A., Haardt, F., & Madau, P. 2007, ApJ, 660, 546CrossRefGoogle Scholar
Sesana, A. 2010, ApJ, 719, 851CrossRefGoogle Scholar
Spitzer, L. & Hart, M. 1971, ApJ, 164, 399CrossRefGoogle Scholar
Vasiliev, E. 2015, MNRAS, 446, 3150CrossRefGoogle Scholar
Vasiliev, E., Antonini, F., & Merritt, D. 2014, ApJ, 785, 163CrossRefGoogle Scholar
Wegg, C. & Bode, J. N. 2011, ApJL, 738, L8CrossRefGoogle Scholar
Yu, Q. 2002, MNRAS, 331, 935CrossRefGoogle Scholar