Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T16:54:21.873Z Has data issue: false hasContentIssue false

The Evolution of Cataclysmic Variables

Published online by Cambridge University Press:  21 February 2013

Lifang Li
Affiliation:
National Astronomical Observatories/Yunnan Observatory, CAS, P.O. Box 110, Kunming, Yunnan Province, 650011, P.R. China (email: llf@ynao.ac.cn) Key Laboratory for the Structure and Evolution of Celestial Objects, CAS, P.O. Box 110, Kunming, Yunnan Province, 650011, P.R. China
Fenghui Zhang
Affiliation:
National Astronomical Observatories/Yunnan Observatory, CAS, P.O. Box 110, Kunming, Yunnan Province, 650011, P.R. China (email: llf@ynao.ac.cn) Key Laboratory for the Structure and Evolution of Celestial Objects, CAS, P.O. Box 110, Kunming, Yunnan Province, 650011, P.R. China
Zhanwen Han
Affiliation:
National Astronomical Observatories/Yunnan Observatory, CAS, P.O. Box 110, Kunming, Yunnan Province, 650011, P.R. China (email: llf@ynao.ac.cn) Key Laboratory for the Structure and Evolution of Celestial Objects, CAS, P.O. Box 110, Kunming, Yunnan Province, 650011, P.R. China
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using Eggletons code the evolution of cataclysmic variables (CVs) is investigated. CVs might suffer the loss of mass and angular momentum during their evolution, we present the models of CVs with mass loss and angular momentum loss (AML) due to gravitation wave radiation (GR) and/or magnetic braking (MB). It is found that the loss of mass and angular momentum has significant influence on the evolution of CVs, and that the change of the star structure or their atmosphere properties is a possible mechanism which underlies a sudden change in the rate of AML owing to MB.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Eggleton, P. P. 1971, MNRAS, 151, 351CrossRefGoogle Scholar
Hameury, J. M., Menou, K., Dubus, G., Lasota, J. P., & Hure, J. M., 1998, MNRAS, 298, 1048CrossRefGoogle Scholar
Hurley, J. R., Pols, O. R., & Tout, C. A., 2000, MNRAS, 315, 543CrossRefGoogle Scholar
Knigge, C. 2006, MNRAS, 373, 484CrossRefGoogle Scholar
Mohanty, S. & Basri, G. 2003, ApJ, 583, 451CrossRefGoogle Scholar
Rappaport, S., Verbunt, F., & Joss, P. C. 1983, ApJ, 275, 713CrossRefGoogle Scholar
Ritter, H. & Kolb, U. 2003, A&A, 404, 301Google Scholar
Sills, A., Pinsonneault, M. H., & Terndrup, D. M., 2000, ApJ, 534, 335CrossRefGoogle Scholar
Webbink, R. F. 1975, PhD Thesis (Univ. Cambridge)Google Scholar