Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T18:56:30.229Z Has data issue: false hasContentIssue false

The evolution of stellar surface activity and possible effects on exoplanets

Published online by Cambridge University Press:  26 August 2011

Mark S. Giampapa*
Affiliation:
National Solar Observatory/NOAO 950 N. Cherry Ave., POB 26732, Tucson, ArizonaUSA85726-6732 email: giampapa@noao.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The evolution of stellar activity involves a complex interplay between the interior dynamo mechanism, the emergent magnetic field configurations and their coupling with stellar winds, the subsequent angular momentum evolution, and fundamental stellar parameters. The discussion of the evolution of surface activity will emphasize the main sequence phase, from the ZAMS to stars of solar-age. We will focus particularly on the evolution of the fractional area coverages of spots on the surfaces of solar-type stars. We fit an empirical relation to the fractional mean spot area coverage as a function of age for ages greater than the Pleiades of the form log(MeanSpotCoverage) = 0.90(±0.26) − 1.03(±0.10)log(Age), where Age is in Myr. In addition, we summarize the relative evolution of radiative emissions in various short wavelength bands that are associated with stellar magnetic field-related activity. Possible effects on young planetary atmospheres also are appropriate to consider given that stellar surface activity is the origin of the high-energy component of the ambient radiation and particle fields in which planetary atmosphere evolution occurs.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Cuntz, M., Guinan, E. F., & Kurucz, R. L. 2010, Solar and Stellar Variability: Impact on Earth and Planets, Proceedings of the International Astronomical Union, IAU Symposium, 264, 419Google Scholar
Engle, S. G., Guinan, E. F., & Mizusawa, T. 2009, Future Directions in Ultraviolet Spectroscopy: A Conference Inspired by the Accomplishments of the Far Ultraviolet Spectroscopic Explorer Mission, AIP Conf. Proc., 1135, p. 221Google Scholar
Foukal, P., Frólich, C., Spruit, H., & Wigley, T. M. L. 2006, Nature, 443, 161CrossRefGoogle Scholar
Giampapa, M. S., Rosner, R., Kashyap, V., Fleming, T. A., Schmitt, J.H.M.M., & Bookbinder, J. A., 1996, Astrophys. J., 463, 707CrossRefGoogle Scholar
Gray, D. F. 2008, The Observation and Analysis of Stellar Photospheres (Cambridge: Cambridge University Press)Google Scholar
Guinan, E. F & Engle, S. G. 2009, The Ages of Stars, Proceedings of the International Astronomical Union, IAU Symposium, 258, 395Google Scholar
Kaltenegger, L. & Traub, W. A. 2009, Astrophys. J., 698, 519CrossRefGoogle Scholar
Livingston, W. C. 2010, private communicationGoogle Scholar
Messina, S., Rodonò, M., & Guinan, E. F. 2001, Astron. Astrophys, 366, 215CrossRefGoogle Scholar
Pizzolato, N., Maggio, A., Micela, G., Sciortino, S., & Ventura, P. 2003, Astron. Astrophys, 397, 147CrossRefGoogle Scholar
Preibisch, T. & Feigelson, E. D. 2005, Astrophys. J. Suppl., 160, 390CrossRefGoogle Scholar
Radick, R. R., Lockwood, G. W., Skiff, B. A., & Thompson, D. T. 1995, Astrophys. J., 452, 332CrossRefGoogle Scholar
Radick, R. R., Lockwood, G. W., Skiff, B. A., & Baliunas, S. L. 1998, Astrophys. J. Suppl., 118, 239CrossRefGoogle Scholar
Saar, S. H., Barnes, S., & Meibom, S. 2010, BAAS, 216, 833Google Scholar
Segura, A., Walkowicz, L., Meadows, V., Kasting, J., & Hawley, S. 2010, Astrobiology, in pressGoogle Scholar
Winn, J. N., Fabrycky, D., Albrecht, S., & Johnson, J. A. 2010, Astrophys. J. Lett., 718, L145CrossRefGoogle Scholar