Article contents
Evolution of stellar winds from the Sun to red giants
Published online by Cambridge University Press: 01 September 2008
Abstract
By performing global 1D MHD simulations, we investigate the heating and acceleration of solar and stellar winds in open magnetic field regions. Our simulation covers from photosphere to 20-60 stellar radii, and takes into account radiative cooling and thermal conduction. We do not adopt ad hoc heating function; heating is automatically calculated from the solutions of Riemann problem at the cell boundaries. In the solar wind case we impose transverse photospheric motions with velocity ~1 km/s and period between 20 seconds and 30 minutes, which generate outgoing Alfvén waves. We have found that the dissipation of Alfvén waves through compressive wave generation by decay instability is quite effective owing to the density stratification, which leads to the sufficient heating and acceleration of the coronal plasma. Next, we study the evolution of stellar winds from main sequence to red giant phases. When the stellar radius becomes ~10 times of the Sun, the steady hot corona with temperature 106 K, suddenly disappears. Instead, many hot and warm (105 – 106 K) bubbles are formed in cool (T < 2 × 104 K) chromospheric winds because of the thermal instability of the radiative cooling function; the red giant wind is not a steady stream but structured outflow.
Keywords
- Type
- Contributed Papers
- Information
- Proceedings of the International Astronomical Union , Volume 4 , Symposium S257: Universal Heliophysical Processes , September 2008 , pp. 589 - 599
- Copyright
- Copyright © International Astronomical Union 2009
References
- 1
- Cited by