Article contents
The Evolution of the Solar Magnetic Field
Published online by Cambridge University Press: 05 March 2015
Abstract
The almost stately evolution of the global heliospheric magnetic field pattern during most of the solar cycle belies the intense dynamic interplay of photospheric and coronal flux concentrations on scales both large and small. The statistical characteristics of emerging bipoles and active regions lead to development of systematic magnetic patterns. Diffusion and flows impel features to interact constructively and destructively, and on longer time scales they may help drive the creation of new flux. Peculiar properties of the components in each solar cycle determine the specific details and provide additional clues about their sources. The interactions of complex developing features with the existing global magnetic environment drive impulsive events on all scales. Predominantly new-polarity surges originating in active regions at low latitudes can reach the poles in a year or two. Coronal holes and polar caps composed of short-lived, small-scale magnetic elements can persist for months and years. Advanced models coupled with comprehensive measurements of the visible solar surface, as well as the interior, corona, and heliosphere promise to revolutionize our understanding of the hierarchy we call the solar magnetic field.
- Type
- Contributed Papers
- Information
- Proceedings of the International Astronomical Union , Volume 10 , Highlights H16: Highlights of Astronomy , August 2012 , pp. 86 - 89
- Copyright
- Copyright © International Astronomical Union 2015
References
- 1
- Cited by