No CrossRef data available.
Article contents
Explaining the winds of AGB stars: Recent progress
Published online by Cambridge University Press: 30 November 2022
Abstract
The winds observed around asymptotic giant branch (AGB) stars are generally attributed to radiation pressure on dust, which is formed in the extended dynamical atmospheres of these pulsating, strongly convective stars. Current radiation-hydrodynamical models can explain many of the observed features, and they are on the brink of delivering a predictive theory of mass loss. This review summarizes recent results and ongoing work on winds of AGB stars, discussing critical ingredients of the driving mechanism, and first results of global 3D RHD star-and-wind-in-a-box simulations. With such models it becomes possible to follow the flow of matter, in full 3D geometry, all the way from the turbulent, pulsating interior of an AGB star, through its atmosphere and dust formation zone into the region where the wind is accelerated by radiation pressure on dust. Advanced instruments, which can resolve the stellar atmospheres, where the winds originate, provide essential data for testing the models.
Keywords
- Type
- Contributed Paper
- Information
- Proceedings of the International Astronomical Union , Volume 16 , Symposium S366: The Origin of Outflows in Evolved Stars , November 2020 , pp. 165 - 172
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
- Copyright
- © The Author(s), 2022. Published by Cambridge University Press on behalf of International Astronomical Union