Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-16T13:35:33.219Z Has data issue: false hasContentIssue false

The Exploration of the ISM from Antarctica

Published online by Cambridge University Press:  30 January 2013

Mark G. Wolfire*
Affiliation:
Astronomy Department, University of Maryland, College Park, MD 20742 email: mwolfire@astro.umd.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Antarctica presents a unique environment for the exploration of the interstellar medium. The low column of water vapor opens windows for sub-mm and THz astronomy from ground and sub-orbital observatories while the stable atmosphere holds promise for THz interferometry. Various current and potentially future facilities occupy a niche not available to current space or stratospheric instruments. These allow line and continuum observations addressing key questions in e.g., star formation, galactic evolution, and the life-cycle of interstellar clouds. This review presents scientific questions that can be addressed by the suite of current and future Antarctic observatories.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Abdo, A. A., et al. 2010, ApJ, 710, 133Google Scholar
Beirão, P., Armus, L., Helou, G., et al. 2012, ApJ, 751, 144Google Scholar
Bennett, C. L., Fixsen, D. J., Hinshaw, G., et al. 1994, ApJ, 434, 587CrossRefGoogle Scholar
Cubick, M., Stutzki, J., Ossenkopf, V., Kramer, C., & Röllig, M. 2008, A&A, 488, 623Google Scholar
Gerin, M.et al. 2010, A&A, 518, L110Google Scholar
Gorti, U. & Hollenbach, D. 2009, ApJ, 690, 1539Google Scholar
Grenier, I. A., Casandjian, J.-M., & Terrier, R. 2005, Science, 307, 1292Google Scholar
Heiles, C. 1994, ApJ, 436, 720CrossRefGoogle Scholar
Hollenbach, D., Kaufman, M. J., Bergin, E. A., & Melnick, G. J. 2009, ApJ, 690, 1497Google Scholar
Kennicutt, R. C., Calzetti, D., Aniano, G., et al. 2011, PASP, 123, 1347Google Scholar
Langer, W. D., Velusamy, T., Pineda, J. L., et al. 2010, A&A, 521, L17Google Scholar
Lawrence, J. S. 2004, PASP, 116, 482Google Scholar
Neufeld, D. A., Falgarone, E., Gerin, M., et al. 2012, A&A, 542, L6Google Scholar
Oberst, T. E., Parshley, S. C., Stacey, G. J., et al. 2006, ApJL, 652, L125Google Scholar
Oberst, T. E., Parshley, S. C., Nikola, T., et al. 2011, Apj, 739, 100Google Scholar
Padoan, P., Jones, B. J. T., & Nordlund, A. P. 1997, ApJ, 474, 730CrossRefGoogle Scholar
Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2011, A&A, 536, A19Google Scholar
Shibai, H., Okuda, H., Nakagawa, T., et al. 1991, ApJ, 374, 522Google Scholar
Smith, B. J. & Madden, S. C. 1997, AJ, 114, 138Google Scholar
Stacey, G. J., Viscuso, P. J., Fuller, C. E., & Kurtz, N. T. 1985, ApJ, 289, 803Google Scholar
van Dishoeck, E. F. & Black, J. H. 1988, ApJ, 334, 771Google Scholar
van Kempen, T. A., Kristensen, L. E., Herczeg, G. J., et al. 2010, A&A, 518, L121Google Scholar
Visser, R., Kristensen, L. E., Bruderer, S., et al. 2012, A&A, 537, A55Google Scholar
Wright, E. L., Mather, J. C., Bennett, C. L., et al. 1991, ApJ, 381, 200Google Scholar
Wolfire, M. G., Hollenbach, D., & McKee, C. F. 2010, ApJ, 716, 1191Google Scholar
Wolfire, M. G., McKee, C. F., Hollenbach, D., & Tielens, A. G. G. M. 2003, ApJ, 587, 278Google Scholar