Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-14T06:23:45.643Z Has data issue: false hasContentIssue false

Extended OH(1720 MHz) maser emission from supernova remnants

Published online by Cambridge University Press:  01 March 2007

J. W. Hewitt
Affiliation:
Department of Physics and Astronomy, Northwestern University,Evanston, IL 60608, USA
F. Yusef-Zadeh
Affiliation:
Department of Physics and Astronomy, Northwestern University,Evanston, IL 60608, USA
M. Wardle
Affiliation:
Department of Physics, Macquarie University, Sydney, NSW 2109, Australia
D. A. Roberts
Affiliation:
Department of Physics and Astronomy, Northwestern University,Evanston, IL 60608, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Compact OH(1720 MHz) masers have proven to be excellent signposts for the interaction of supernova remnants with adjacent molecular clouds. Less appreciated has been the weak, extended OH(1720 MHz) emission which accompanies strong compact maser sources. Recent single-dish and interferometric observations reveal the majority of maser-emitting supernova remnants(SNRs) have accompanying regions of extended maser emission. Enhanced OH abundance created by the passing shock is observed both as maser emission and absorption against the strong background of the remnant. Modeling the observed OH profiles gives an estimate of the physical conditions in which weak, extended maser emission arises. I will discuss how we can realize the utility of this extended maser emission, particularly the potential to measure the strength of the post-shock magnetic field via Zeeman splitting over these large-scales.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Brogan, C. L., Frail, D. A., Goss, W. M., & Troland, T. H. 2000, ApJ 537, 875CrossRefGoogle Scholar
Claussen, M. J., Frail, D. A., Goss, W. M., & Gaume, R. A. 1997, ApJ 489, 143CrossRefGoogle Scholar
Frail, D. A., Goss, W. M., & Slysh, V. I. 1994, ApJL, 424, L111CrossRefGoogle Scholar
Frail, D. A., Goss, W. M., Reynoso, E. M., Giacani, E. B., et al. 1996, AJ 111, 1651CrossRefGoogle Scholar
Giacani, E. B., Dubner, G. M., Kassim, N. E., Frail, D. A., et al. 1997, AJ 113, 1379CrossRefGoogle Scholar
Goss, W. M., & Robinson, B. J. 1968, AP Letters 2, 81Google Scholar
Green, A. J., Frail, D. A., Goss, W. M., & Otrupcek, R. 1997, AJ 114, 2058CrossRefGoogle Scholar
Hewitt, J. W., Yusef-Zadeh, F., Wardle, M. et al. , 2006, ApJ 652, 1288CrossRefGoogle Scholar
Hoffman, I. M., Goss, W. M., Brogan, C. L., et al. 2003, ApJ 583, 272CrossRefGoogle Scholar
Hoffman, I. M. 2004, Ph.D. ThesisGoogle Scholar
Koralesky, B., Frail, D. A., Goss, W. M., Claussen, M. J., & Green, A. J. 1998, AJ 116, 1323CrossRefGoogle Scholar
Lazendic, J. S., Wardle, M., Burton, M. G., Yusef-Zadeh, F. et al. , 2002, MNRAS 331, 537CrossRefGoogle Scholar
Lockett, P., Gauthier, E., & Elitzur, M. 1999, ApJ 511, 235CrossRefGoogle Scholar
Reach, W. T., et al. 2006, AJ 131, 1479CrossRefGoogle Scholar
Snell, R. L., Hollenbach, D., Howe, J. E., Neufeld, D. A., et al. 2005, ApJ 620, 758CrossRefGoogle Scholar
Wardle, M. 1999, ApJL, 525, L101CrossRefGoogle Scholar
Yusef-Zadeh, F., Goss, W. M., Roberts, D. A., Robinson, B., & Frail, D. A. 1999, ApJ 527, 172CrossRefGoogle Scholar
Yusef-Zadeh, F., Wardle, M., & Roberts, D. A. 2003, ApJ 583, 267CrossRefGoogle Scholar